A SIMPLE PROOF OF BALOG-SZEMERÉDI-GOWERS (ADAPTED FROM SCHOEN)

THOMAS F. BLOOM

Let

$$
1_{A} \circ 1_{B}(x)=\sum_{y} 1_{A}(y) 1_{B}(x+y)=|A \cap(B+x)|
$$

Note that

$$
\sum_{s} 1_{A} \circ 1_{B}(s)=|A||B|
$$

and

$$
\sum_{s} 1_{A} \circ 1_{B}(s)^{2}=E(A, B) .
$$

Lemma 1. If $E(A, B) \geq K^{-1}|A|^{2}|B|$ then for any $0<c<1$ there is some $X \subseteq A$ such that $|X| \geq \frac{1}{2} K^{-1}|A|$ and for all but at most $c|X|^{2}$ many pairs $(a, b) \in X^{2}$,

$$
1_{B} \circ 1_{B}(a-b) \geq \frac{c}{2} K^{-2}|A|
$$

Proof. Let $A_{s}=A \cap(B+s)$. We have

$$
\begin{aligned}
\sum_{s} 1_{A} \circ 1_{B}(s)\left|A_{s}\right| & =\sum_{s} 1_{A} \circ 1_{B}(s)^{2} \\
& =E(A, B)
\end{aligned}
$$

By the Cauchy-Schwarz inequality therefore,

$$
\sum_{s} 1_{A} \circ 1_{B}(s)\left|A_{s}\right|^{2} \geq \frac{E(A, B)^{2}}{|A||B|}
$$

For any $G \subseteq A^{2}$,

$$
\sum_{s} 1_{A} \circ 1_{B}(s)\left|A_{s}^{2} \cap G\right|=\sum_{(a, b) \in G} \sum_{s} 1_{A} \circ 1_{B}(s) 1_{B}(a-s) 1_{B}(b-s) .
$$

The innermost sum we bound using the trivial observation that $1_{A} \circ 1_{B}(s) \leq|B|$:

$$
\begin{aligned}
\sum_{s} 1_{B} \circ 1_{B}(s) 1_{B}(a-s) 1_{B}(b-s) & \leq|B| \sum_{x} 1_{B}(a-x) 1_{B}(b-x) \\
& =|B| 1_{B} \circ 1_{B}(a-b) .
\end{aligned}
$$

It follows that

$$
\sum_{s} 1_{A} \circ 1_{B}(s)\left|A_{s}^{2} \cap G\right| \leq|B| \sum_{(a, b) \in G} 1_{B} \circ 1_{B}(a-b)
$$

In particular, if G is the set of pairs where

$$
1_{B} \circ 1_{B}(a-b) \leq \frac{c}{2} \frac{E(A, B)^{2}}{|A|^{3}|B|^{2}}
$$

then (using the trivial bound $|G| \leq|A|^{2}$)

$$
\sum_{s} 1_{A} \circ 1_{B}(s)\left|A_{s}^{2} \cap G\right| \leq \frac{c}{2} \frac{E(A, B)^{2}}{|A||B|}
$$

Combining these inequalities (and using $\sum_{s} 1_{A} \circ 1_{B}(s)=|A||B|$) we have

$$
\sum_{s} 1_{A} \circ 1_{B}(s)\left(\frac{c}{2} \frac{E(A, B)^{2}}{|A||B|}+\left|A_{s}^{2} \cap G\right|\right) \leq \sum_{s} 1_{A} \circ 1_{B}(s)\left(c\left|A_{s}\right|^{2}\right)
$$

In particular there must exist some s such that, if $X=A_{s}$, then

$$
\frac{c}{2} \frac{E(A, B)^{2}}{|A|^{2}|B|^{2}}+\left|X^{2} \cap G\right| \leq c|X|^{2}
$$

In particular, such an X must satisfy

$$
|X| \geq \frac{E(A, B)}{2^{1 / 2}|A||B|}
$$

and $\left|X^{2} \cap G\right| \leq c|X|^{2}$, which is the statement of the lemma.
Lemma 2 (Balog-Szemerédi-Gowers). If $E(A, B) \geq K^{-1}|A|^{2}|B|$ then there exists a subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right| \geq 2^{-4} K^{-1}|A|$ and

$$
\left|A^{\prime}-A^{\prime}\right| \leq 2^{10}\left(K \frac{|B|}{|A|}\right)^{4}|A|
$$

Proof. We apply Lemma 1 with $c=1 / 8$. Let $G \subseteq X^{2}$ be the set of pairs such that $1_{B} \circ 1_{B}(a-b) \geq 2^{-4} K^{-2}|A|$, so that $|G| \geq \frac{7}{8}|X|^{2}$. Let $A^{\prime} \subseteq X$ be the set of $x \in X$ which are in at least $\frac{3}{4}|X|$ many pairs in G. Note that

$$
\sum_{x \in X \backslash A^{\prime}} \#\{(x, y) \in G: y \in X\}<\frac{3}{4}|X|^{2}
$$

and hence
so

$$
|X|\left|A^{\prime}\right| \geq \sum_{x \in A^{\prime}} \#\{(x, y) \in G: y \in X\} \geq \frac{1}{8}|X|^{2}
$$

$$
\left|A^{\prime}\right| \geq \frac{1}{8}|X| \geq 2^{-4} K^{-1}|A|
$$

We now claim that for any $x \in A^{\prime}-A^{\prime}$ there are $\geq 2^{-9} K^{-4}|A|^{2}|X|$ many quadruples $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in B^{4}$ such that $x=a_{1}-a_{2}+a_{3}-a_{4}$. Assuming this for the moment, since the total number of such quadruples is trivially at most $|B|^{4}$, we have

$$
|B|^{4} \geq\left|A^{\prime}-A^{\prime}\right| 2^{-9} K^{-4}|A|^{2}|X|
$$

Recalling that $|X| \geq 2^{-1} K^{-1}|A|$, the result follows.
It remains to prove the claimed lower bound on the number of quadruples. Fix some $a, b \in A^{\prime}$ such that $x=a-b$. By choice of A^{\prime}, there must be $\geq \frac{1}{2}|X|$ many $c \in X$ such that $(a, c),(b, c) \in G$, whence there are $\geq 2^{-4} K^{-2}|A|$ many $\left(a_{1}, a_{2}\right) \in B^{2}$ such that $a_{1}-a_{2}=a-c$, and similarly many $\left(a_{3}, a_{4}\right) \in B^{2}$ such that $a_{3}-a_{4}=b-c$. Any choice of such representations gives a quadruple such that $a_{1}-a_{2}-a_{3}+a_{4}=x$, since

$$
x=a-b=(a-c)-(b-c)=\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right) .
$$

Finally, note that different c must give rise to different quadruples, since a and b are fixed with x, and hence c can be recovered from the quadruple. There are $\geq \frac{1}{2}|X|$ many choices for c, and each c gives rise to $\geq 2^{-8} K^{-4}|A|^{2}$ many different quadruples, whence there are $\geq 2^{-9} K^{-4}|A|^{2}|X|$ many quadruples in total, as required.

