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Let

1A ◦ 1B(x) =
∑
y

1A(y)1B(x+ y) = |A ∩ (B + x)| .

Note that ∑
s

1A ◦ 1B(s) = |A| |B|

and ∑
s

1A ◦ 1B(s)2 = E(A,B).

Lemma 1. If E(A,B) ≥ K−1 |A|2 |B| then for any 0 < c < 1 there is some X ⊆ A

such that |X| ≥ 1
2K

−1 |A| and for all but at most c |X|2 many pairs (a, b) ∈ X2,

1B ◦ 1B(a− b) ≥ c

2
K−2 |A| .

Proof. Let As = A ∩ (B + s). We have∑
s

1A ◦ 1B(s) |As| =
∑
s

1A ◦ 1B(s)2.

= E(A,B).

By the Cauchy-Schwarz inequality therefore,∑
s

1A ◦ 1B(s) |As|2 ≥ E(A,B)2

|A| |B|
.

For any G ⊆ A2,∑
s

1A ◦ 1B(s)
∣∣A2

s ∩G
∣∣ = ∑

(a,b)∈G

∑
s

1A ◦ 1B(s)1B(a− s)1B(b− s).

The innermost sum we bound using the trivial observation that 1A ◦ 1B(s) ≤ |B|:∑
s

1B ◦ 1B(s)1B(a− s)1B(b− s) ≤ |B|
∑
x

1B(a− x)1B(b− x)

= |B| 1B ◦ 1B(a− b).

It follows that ∑
s

1A ◦ 1B(s)
∣∣A2

s ∩G
∣∣ ≤ |B|

∑
(a,b)∈G

1B ◦ 1B(a− b).

In particular, if G is the set of pairs where

1B ◦ 1B(a− b) ≤ c

2

E(A,B)2

|A|3 |B|2
,

then (using the trivial bound |G| ≤ |A|2)∑
s

1A ◦ 1B(s)
∣∣A2

s ∩G
∣∣ ≤ c

2

E(A,B)2

|A| |B|
.
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Combining these inequalities (and using
∑

s 1A ◦ 1B(s) = |A| |B|) we have∑
s

1A ◦ 1B(s)
(
c

2

E(A,B)2

|A| |B|
+

∣∣A2
s ∩G

∣∣) ≤
∑
s

1A ◦ 1B(s)
(
c |As|2

)
.

In particular there must exist some s such that, if X = As, then

c

2

E(A,B)2

|A|2 |B|2
+
∣∣X2 ∩G

∣∣ ≤ c |X|2 .

In particular, such an X must satisfy

|X| ≥ E(A,B)

21/2 |A| |B|

and
∣∣X2 ∩G

∣∣ ≤ c |X|2, which is the statement of the lemma. □

Lemma 2 (Balog-Szemerédi-Gowers). If E(A,B) ≥ K−1 |A|2 |B| then there exists
a subset A′ ⊆ A such that |A′| ≥ 2−4K−1 |A| and

|A′ −A′| ≤ 210
(
K

|B|
|A|

)4

|A| .

Proof. We apply Lemma 1 with c = 1/8. Let G ⊆ X2 be the set of pairs such that

1B ◦1B(a− b) ≥ 2−4K−2 |A|, so that |G| ≥ 7
8 |X|2. Let A′ ⊆ X be the set of x ∈ X

which are in at least 3
4 |X| many pairs in G. Note that∑
x∈X\A′

#{(x, y) ∈ G : y ∈ X} <
3

4
|X|2

and hence

|X| |A′| ≥
∑
x∈A′

#{(x, y) ∈ G : y ∈ X} ≥ 1

8
|X|2 ,

so

|A′| ≥ 1

8
|X| ≥ 2−4K−1 |A| .

We now claim that for any x ∈ A′ − A′ there are ≥ 2−9K−4 |A|2 |X| many
quadruples (a1, a2, a3, a4) ∈ B4 such that x = a1 − a2 + a3 − a4. Assuming this for

the moment, since the total number of such quadruples is trivially at most |B|4, we
have

|B|4 ≥ |A′ −A′| 2−9K−4 |A|2 |X| .
Recalling that |X| ≥ 2−1K−1 |A|, the result follows.

It remains to prove the claimed lower bound on the number of quadruples. Fix
some a, b ∈ A′ such that x = a − b. By choice of A′, there must be ≥ 1

2 |X|
many c ∈ X such that (a, c), (b, c) ∈ G, whence there are ≥ 2−4K−2 |A| many
(a1, a2) ∈ B2 such that a1−a2 = a− c, and similarly many (a3, a4) ∈ B2 such that
a3 − a4 = b − c. Any choice of such representations gives a quadruple such that
a1 − a2 − a3 + a4 = x, since

x = a− b = (a− c)− (b− c) = (a1 − a2)− (a3 − a4).

Finally, note that different c must give rise to different quadruples, since a and
b are fixed with x, and hence c can be recovered from the quadruple. There are
≥ 1

2 |X| many choices for c, and each c gives rise to ≥ 2−8K−4 |A|2 many different

quadruples, whence there are ≥ 2−9K−4 |A|2 |X| many quadruples in total, as
required. □


