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Let
laolg(z ZIA Np(z+y)=|AN(B+z)|.
Note that
S 1ao1s(s) = 4]|B]
and

> 1aolp(s)* = E(A,B).
Lemma 1. If E(A, B) > K~ |A|*|B| then for any 0 < ¢ < 1 there is some X C A
such that | X| > 1K~V |A| and for all but at most ¢|X|? many pairs (a,b) € X2,
lpolp(a—b)> gK*Q 1A

Proof. Let A; = AN (B + s). We have

D 1aolp(s)|Ad =) 1aolp(s)

= FE(A, B).
By the Cauchy-Schwarz inequality therefore,
E(A,B)®
1aolp(s)|As P>t
Z |Al[B

For any G C A2,
Zlelg ’A2QG| Z ZlelB 1B a—S)lB(b—S)
(a,b)eG s
The innermost sum we bound using the trivial observation that 14 0 15(s) < |B|:

213013 Jp(a—s)1p(b—s) <[B|> lp(a—2x)lp(b—x)

x

— |B|1golp(a—b).
It follows that
ZlelB ’A2QG|<|B| Z 13013(a—b)

(a,b)eG
In particular, if G is the set of pairs where
c E(A, B)?
lpolpla—0b) < - —5—%,
24P B

then (using the trivial bound |G| < |A]*)

E(AB
ZlelB ’A2ﬂG|_;|(A|B)
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Combining these inequalities (and using ) 14 0 15(s) = |A||B|) we have
C l;(fl7 B)2 2 2
1A013(8)(+ A2nGl|) < 1A013(3)(C|A8|).
2 VIR RURDS
In particular there must exist some s such that, if X = A, then
c E(A, B)?
2 AP B

In particular, such an X must satisfy

+|X2NG| < el X)?.

E(4, B)
X > —""7
X = 57 Tars

and |[X2NG| <c |X|?, which is the statement of the lemma. O

Lemma 2 (Balog-Szemerédi-Gowers). If E(A, B) > K~'|A|”|B| then there exists
a subset A’ C A such that |A'| > 274K~ |A| and

I Al 10 B>4

A" — A <2 (K|A| |A].

Proof. We apply Lemma 1 with ¢ = 1/8. Let G C X2 be the set of pairs such that
lgolg(a—b) >27*K~2|A| so that |G| > % |X|?. Let A’ C X be the set of z € X
which are in at least 2 |X| many pairs in G. Note that

3
Y. #H@y) eGye Xy < IXP
zeX\A’
and hence 1
XA > ) #{xy) eGiye X} > ng\27

zeA’
SO

1
A > 2 X[ =27 K AL

We now claim that for any 2 € A’ — A’ there are > 279K *|A[*|X| many
quadruples (a1, as,as,a4) € B* such that = a1 — as + az — a4. Assuming this for
the moment, since the total number of such quadruples is trivially at most |B|4, we
have

1B* > |A' — A'|27°K~* A% |X].
Recalling that |X| > 271K ~1|A|, the result follows.

It remains to prove the claimed lower bound on the number of quadruples. Fix
some a,b € A’ such that * = a — b. By choice of A’, there must be > 1|X]|
many ¢ € X such that (a,c),(b,c) € G, whence there are > 274K ~2|A| many
(a1,az) € B? such that a; —as = a — ¢, and similarly many (as3,a4) € B? such that
az —ag = b — c¢. Any choice of such representations gives a quadruple such that
ay, — as — a3 + a4 = x, since

x=a—-b=(a—c)—(b—c) = (a1 —a2) — (a3 — aq).
Finally, note that different ¢ must give rise to different quadruples, since a and
b are fixed with x, and hence ¢ can be recovered from the quadruple. There are
> 1|X| many choices for ¢, and each c gives rise to > 278K ~* |A]* many different
quadruples, whence there are > 279K 4 |A|2 |X| many quadruples in total, as
required. O



