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Preface

Expander graphs are a remarkable type of graph (or more precisely, a family
of graphs) on finite sets of vertices that manage to simultaneously be both
sparse (low-degree) and “highly connected” at the same time. They enjoy
very strong mixing properties: if one starts at a fixed vertex of an (two-sided)
expander graph and randomly traverses its edges, then the distribution of
one’s location will converge exponentially fast to the uniform distribution.
For this and many other reasons, expander graphs are useful in a wide variety
of areas of both pure and applied mathematics.

There are now many ways to construct expander graphs, but one of the
earliest constructions was based on the Cayley graphs of a finite group (or of
a finitely generated group acting on a finite set). The expansion property for
such graphs turns out to be related to a rich variety of topics in group the-
ory and representation theory, including Kazhdan’s property (T), Gowers’
notion of a quasirandom group, the sum-product phenomenon in arithmetic
combinatorics, and the Larsen-Pink classification of finite subgroups of a
linear group. Expansion properties of Cayley graphs have also been applied
in analytic number theory through what is now known as the affine sieve of
Bourgain, Gamburd, and Sarnak, which can count almost prime points in
thin groups.

This text is based on the lecture notes from a graduate course on these
topics I gave at UCLA in the winter of 2012, as well as from some additional
posts on my blog at terrytao.wordpress.com on further related topics.
The first part of this text can thus serve as the basis for a one-quarter
or one-semester advanced graduate course, depending on how much of the
optional material one wishes to cover. While the material here is largely self-
contained, some basic graduate real analysis (in particular, measure theory,
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xii Preface

Hilbert space theory, and the theory of Lp norms), graph theory, and linear
algebra (e.g. the spectral theorem for unitary matrices) will be assumed.
Some prior familiarity with the classical Lie groups (particularly the special
linear group SLn and the unitary group Un) and representation theory will
be helpful but not absolutely necessary. To follow Section 3.3.9 (which is
optional) some prior exposure to Riemannian geometry would also be useful.

The core of the text is Part 1. After discussing the general theory of
expander graphs in first section, we then specialise to the case of Cayley
graphs, starting with the remarkable observation1 of Margulis linking Kazh-
dan’s property (T) with expansion, and then turning to the more recent
observations of Sarnak, Xue, Gamburd, and Bourgain linking the property
of finite groups now known as quasirandomness with expansion, which is
also related to the famous “3/16 theorem” of Selberg. As we will present
in this text, this sets up a general “machine” introduced by Bourgain and
Gamburd for verifying expansion in a Cayley graph, which in addition to
quasirandomness requires two additional ingredients, namely a product the-
orem and a non-concentration estimate. These two ingredients are then the
focus of the next two sections of this part. The former ingredient uses tech-
niques from arithmetic combinatorics related to the sum-product theorem,
as well as estimates of Larsen and Pink on controlling the interaction be-
tween finite subgroups of a linear group and various algebraic varieties (such
as conjugacy classes or maximal tori). The latter ingredient is perhaps the
most delicate aspect of the theory, and often requires a detailed knowledge
of the algebraic (and geometric) structure of the ambient group. Finally, we
present an application of these ideas to number theory by introducing the
basics of sieve theory, and showing how expansion results may be inserted
into standard sieves to give new bounds on almost primes in thin groups.

Part 2 contains a variety of additional material that is related to one
or more of the topics covered in Part 1, but which can be omitted for the
purposes of teaching a graduate course on the subject.

Notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

1This material in Section 2 is not absolutely required for subsequent sections of this part,

although it does provide some helpful context for these later sections. Thus, this section may be
abridged or even omitted altogether in a lecture course if desired.
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Given a subset E of a space X, the indicator function 1E : X → R is
defined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for x 6∈ E.

The cardinality of a finite set E will be denoted |E|. We will use2 the
asymptotic notation X = O(Y ), X � Y , or Y � X to denote the estimate
|X| ≤ CY for some absolute constant C > 0. In some cases we will need
this constant C to depend on a parameter (e.g. d), in which case we shall
indicate this dependence by subscripts, e.g. X = Od(Y ) or X �d Y . We
also sometimes use X ∼ Y as a synonym for X � Y � X. If n is a
parameter going to infinity, we let on→∞(1) denote a quantity depending
on n and bounded in magnitude by c(n) for some quantity c(n) that goes
to zero as n → ∞. More generally, given an additional parameter such as
k, we let on→∞;k(1) to denote a quantity that may depend on both k and
n, which is bounded by ck(n) for some quantity ck(n) that goes to zero as
n→∞ for each fixed k.
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Part 1

Expansion in Cayley
graphs





Chapter 1

Expander graphs: basic
theory

The objective of this text is to present a number of recent constructions
of expander graphs, which are a type of sparse but “pseudorandom” graph
of importance in computer science, the theory of random walks, geometric
group theory, and in number theory. The subject of expander graphs and
their applications is an immense one, and we will not possibly be able to
cover it in full here. For instance, we will say almost nothing about the
important applications of expander graphs to computer science, for instance
in constructing good pseudorandom number generators, derandomising a
probabilistic algorithm, constructing error correcting codes, or in building
probabilistically checkable proofs. For such topics, see [HoLiWi2006].

Instead of focusing on applications, this text will concern itself much
more with the task of constructing expander graphs. This is a surprisingly
non-trivial problem. On one hand, we shall see that an easy application
of the probabilistic method shows that a randomly chosen (large, regular,
bounded-degree) graph will be an expander graph with very high proba-
bility, so expander graphs are extremely abundant. On the other hand, in
many applications, one wants an expander graph that is more deterministic
in nature (requiring either no or very few random choices to build), and of a
more specialised form. For the applications to number theory or geometric
group theory, it is of particular interest to determine the expansion proper-
ties of a very symmetric type of graph, namely a Cayley graph; we will also
occasionally work with the more general concept of a Schreier graph. It turns
out that such questions are related to deep properties of various groups G of
Lie type (such as SL2(R) or SL2(Z)), such as Kazhdan’s property (T), the

3



4 1. Expander graphs: basic theory

first nontrivial eigenvalue of a Laplacian on a symmetric space G/Γ associ-
ated to G, the quasirandomness of G (as measured by the size of irreducible
representations), and the product theory of subsets of G. These properties
are of intrinsic interest to many other fields of mathematics (e.g. ergodic
theory, operator algebras, additive combinatorics, representation theory, fi-
nite group theory, number theory, etc.), and it is quite remarkable1 that a
single problem - namely the construction of expander graphs - is so deeply
connected with such a rich and diverse array of mathematical topics.

There are also other important constructions of expander graphs that are
not related to Cayley or Schreier graphs, such as those graphs constructed
by the zigzag product construction, but we will not discuss those types of
graphs here; again, the reader is referred to [HoLiWi2006].

1.1. Expander graphs

We begin by defining the concept of an expander graph formally. As with
many fundamentally important concepts in mathematics, there are a num-
ber of equivalent definitions of this concept. We will adopt a “spectral”
perspective towards expander graphs, defining them in terms of a certain
spectral gap, but will relate this formulation of expansion to the more clas-
sical notion of edge expansion later in this chapter.

We begin by recalling the notion of a graph. To avoid some very minor
technical issues, we will work with undirected, loop-free, multiplicity-free
graphs (though later, when we discuss Cayley graphs, we will allow loops
and repetition).

Definition 1.1.1. A graph is a pair G = (V,E), where V is a set (called

the vertex set of G), and E ⊂
(
V
2

)
is a collection of unordered pairs {v, w}

of distinct elements v, w of V , known as the edge set of E. Elements of V
or E are called vertices and edges of E A graph is finite if the vertex set
(and hence the edge set) is finite. If k ≥ 0 is a natural number, we say that
a graph G = (V,E) is k-regular if each vertex of V is contained in exactly
k edges in E; we refer to k as the degree of the regular graph G.

Example 1.1.2. The complete graph (V,
(
V
2

)
) on a vertex set V has edge

set
(
V
2

)
:= {{v, w} : v, w ∈ V, v 6= w}. If V has n elements, the complete

graph is n− 1-regular.

1Perhaps this is because so many of these fields are all grappling with aspects of a single
general problem in mathematics, namely when to determine whether a given mathematical object

or process of interest “behaves pseudorandomly” or not, and how this is connected with the
symmetry group of that object or process.



1.1. Expander graphs 5

In this course, we will mostly be interested in constant-degree large finite
regular graphs, in which k is fixed (e.g. k = 4), and the number n = |V | of
vertices is going off to infinity.

Given a finite graph G = (V,E), we let `2(V ) be the finite-dimensional
complex Hilbert space of functions f : V → C with norm

‖f‖`2(V ) := (
∑
v∈V
|f(v)|2)1/2

and inner product

〈f, g〉`2(V ) :=
∑
v∈V

f(v)g(v).

We then can define the adjacency operator A : `2(V ) → `2(V ) on functions
f ∈ `2(V ) by the formula

Af(v) :=
∑

w∈V :{v,w}∈E

f(w),

thus Af(v) is the sum of f over all of the neighbours of v; this is of course
a linear operator. If one enumerates the vertices V as v1, . . . , vn in some
fashion, then one can associate A with an n × n matrix, known as the
adjacency matrix of G (with this choice of vertex enumeration).

As our graphs are undirected, the adjacency operator A is clearly self-
adjoint (and the adjacency matrix is real symmetric). By the spectral the-
orem, A thus has (counting multiplicity) n real eigenvalues

λ1 ≥ . . . ≥ λn.

We will write λi as λi(G) whenever we need to emphasise the dependence
of the eigenvalues on the graph G.

The largest eigenvalue λ1 is easily understood for k-regular graphs:

Lemma 1.1.3. If G is a k-regular graph, then

k = λ1 ≥ λn ≥ −k.

Proof. Clearly A1 = k1 (where we write 1 ∈ `2(V ) for the constant function
v 7→ 1), and so k is an eigenvalue of A with eigenvector 1. On the other
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hand, for any f, g ∈ `2(V ) with norm one, one has

|〈Af, g〉`2(V )| =

∣∣∣∣∣∣
∑

v,w∈V :{v,w}∈E

f(w)g(v)

∣∣∣∣∣∣
≤ 1

2

∑
v,w∈V :{v,w}∈E

|f(w)|2 + |g(v)|2

≤ 1

2
k
∑
w∈V
|f(w)|2 +

1

2
k
∑
v∈V
|g(v)|2

= k,

and so A has operator norm k (or equivalently, all eigenvalues of A lie
between −k and k). The claim follows. �

Now we turn to the next eigenvalue after λ1.

Definition 1.1.4 (Expander family). Let ε > 0 and k ≥ 1. A finite k-
regular graph is said to be a (one-sided) ε-expander if one has

λ2 ≤ (1− ε)k
and a two-sided ε-expander if one also has

λn ≥ −(1− ε)k.
A sequence Gi = (Vi, Ei) of finite k-regular graphs is said to be a one-sided
(resp. two-sided) expander family if there is an ε > 0 such that Gi is a
one-sided (resp. two-sided) ε-expander for all sufficiently large i.

Remark 1.1.5. The operator ∆ := 1 − 1
kA is sometimes known as2 the

graph Laplacian. This is a positive semi-definite operator with at least
one zero eigenvalue (corresponding to the eigenvector 1). A graph is an
ε-expander if and only if there is a spectral gap of size ε in ∆, in the sense
that the first eigenvalue of ∆ exceeds the second by at least ε. The graph
Laplacian is analogous to the classical Laplacian in Euclidean space (or the
Laplace-Beltrami operator on Riemannian manifolds); see Section 3.3 for a
formalisations of this analogy.

The original definition of expander graphs focused on one-sided ex-
panders, but it will be slightly more natural in this text to focus on the
two-sided expanders. (But for Cayley graphs the two notions are almost
equivalent; see Exercise 5.0.5.)

Strictly speaking, we have not defined the notion of a (one or two-sided)
expander graph in the above definition; we have defined an ε-expander graph

2It is also common to use the normalisation k−A instead of 1− 1
k
A in many texts, particularly

if one wishes to generalise to graphs that are not perfectly regular.
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for any given parameter ε > 0, and have defined the notion of an expander
family, which is a sequence of graphs rather than for an individual graph.
One could propose defining an expander graph to be a graph that is a one or
two-sided ε-expander for some ε > 0 (or equivalently, a graph G such that
the constant sequence G,G, . . . is an expander family), but this definition
collapses to existing concepts in graph theory:

Exercise 1.1.1 (Qualitative expansion). Let k ≥ 1, and let G = (V,E) be
a finite k-regular graph.

(i) Show that λ2 = k if and only if G is not connected.

(ii) Show that λn = −k if and only if G contains a non-empty bipartite
graph as a connected component.

Thus, a graph is a one-sided expander for some ε > 0 if and only if it is
connected, and a two-sided expander for some ε > 0 if and only if it is
connected and not bipartite.

To obtain a more interesting theory, it is therefore necessary to either
keep a more quantitative track of the ε parameter, or3 work with expander
families (typically involving vertex sets whose cardinality goes to infinity)
rather than with individual graphs. Nevertheless, we will often informally
drop the ε parameter (or the use of families) and informally refer simply to
“expander graphs” in our discussion.

By taking the trace of the adjacency matrix or its square, one obtains
some basic identities concerning the eigenvalues of a k-regular graph:

Exercise 1.1.2 (Trace formulae). Let G be a k-regular graph on n vertices
for some n > k ≥ 1.

(i) Show that
∑n

i=1 λi = 0.

(ii) Show that
∑

i=1 λ
2
i = nk.

(iii) Show that max(|λ2|, |λn|) ≥
√
k− on→∞;k(1), where on→∞;k(1) de-

notes a quantity that goes to zero as n→∞ for fixed k.

Remark 1.1.6. The above exercise places an upper bound on how strong
of a two-sided expansion one can obtain for a large k-regular graph. It is
not quite sharp; it turns out that one can obtain the improvement

max(|λ2|, |λn|) ≥ 2
√
k − 1− on→∞;k(1),

a result of Alon and Boppana; see [HoLiWi2006] for a proof. Graphs with
max(|λ2|, |λn|) ≤ 2

√
k − 1 are known as Ramanujan graphs, and (as the

3Alternatively, one could adopt a nonstandard analysis viewpoint and work with ultra ex-

pander graphs - i.e. ultraproducts of expander families - but we will postpone using this sort of
viewpoint until Section 5.5.
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name suggests) have connections to number theory, but we will not discuss
this topic here; see for instance [DaSaVa2003] for more discussion.

We will give a probabilistic construction of an expander family later,
but let us first give an example of a family of regular graphs that is not an
expander family.

Exercise 1.1.3. For each n ≥ 3, let Gn be the 2-regular graph whose vertex
set is the cyclic group Z/nZ, and whose edge set is the set of pairs {x, x+1}
for x ∈ Z/nZ. (This is a basic example of a Cayley graph; such graphs will
be discussed in more depth in Chapter 2.)

(i) Show that the eigenvalues of the adjacency operator An associated
to Gn are 2 cos(2πj/n) for j = 0, . . . , n − 1. (Hint: you may find
the discrete Fourier transform to be helpful.)

(ii) Show that Gn is not a one-sided expander family (and is thus not a
two-sided expander family either). This is despite Gn always being
connected (and non-bipartite for n odd).

The next exercise shows that the complete graph (Exercise 1.1.2) is an
excellent expander; the whole point, though, of expander graph construc-
tions is to come up with much sparser graphs that still has many of the
connectivity and expansion properties of the complete graph.

Exercise 1.1.4. Let G be the complete graph on n vertices, which is of
course a n− 1-regular graph. Show that

λ2 = . . . = λn = −1

and so G is a one-sided 1+ 1
n−1 -expander and a two-sided 1− 1

n−1 -expander.

(This is not a counterexample to Exercise 1.1.2(iii), because the error term
on→∞;k(1) is only negligible in the regime when k is either fixed or is a
very slowly growing function of n, and this is definitely not the case for the
complete graph.)

Exercise 1.1.5. Let G = (V,E) be a k-regular graph on n vertices. Let

Gc = (V,
(
V
2

)
\E) be the complement graph, consisting of all the edges con-

necting two vertices in V that are not in E, thus Gc is an n− k − 1-regular
graph. Show that

λi(G
c) = −1− λn+2−i(G)

for all 2 ≤ i ≤ n.

Exercise 1.1.6. Let n ≥ 2 be an even number, and let G = Kn/2,n/2 be
the complete bipartite graph between two sets of n/2 vertices each, thus G
is an n/2-regular graph. Show that λn = −n/2 and λ2 = . . . = λn−1 = 0.
Thus, G is a one-sided 1-expander, but is not a two-sided expander at all.
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Exercise 1.1.7 (Expansion and Poincaré inequality). If G = (V,E) is a
k-regular graph and f : V → C is a function, define the gradient magnitude
|∇f | : V → C by the formula

|∇f(v)| :=

 ∑
w∈V :{v,w}∈E

|f(w)− f(v)|2
1/2

.

Show that G is a one-sided ε-expander if and only if one has the Poincaré
inequality

‖∇f‖2`2(V ) ≥ 2kε‖f‖2`2(V )

whenever f has mean zero.

Exercise 1.1.8 (Connection between one-sided and two-sided expansion).
Let G = (V,E) be a k-regular graph, let ε > 0, and let G′ = (V ′, E′) be the
bipartite version of G in which V ′ := V ×{1, 2} and E′ := {{(v, 1), (w, 2)} :
{v, w} ∈ E}. Show that G is a two-sided ε-expander if and only if G′ is a
one-sided ε-expander. Based on this observation, introduce a notion of two-
sided expansion for directed graphs, related to the singular values of the
adjacency matrix, and connect it to one-sided expansion of the (undirected)
bipartite version of this graph.

1.2. Connection with edge expansion

The intuition to explain Exercise 1.1.3 should be that while Gn is, strictly
speaking, connected, it is not very strongly connected; the paths connecting
a typical pair of points are quite long (comparable to n, the number of
vertices) and it is easy to disconnect the graph into two large pieces simply
by removing a handful of edges.

We now make this intuition more precise. Given two subsets F1, F2 of
the vertex set V in a graph G = (V,E), define E(F1, F2) ⊂ F1 × F2 to be
the set of all pairs (v1, v2) ∈ F1 × F2 such that {v1, v2} ∈ E. Note that the
cardinality of this set can be expressed in terms of the adjacency operator
as

|E(F1, F2)| = 〈A1F1 , 1F2〉`2(V ).

Define the boundary ∂F of a subset F of V to be the set ∂F := E(F, V \F ),
thus ∂F is essentially the set of all edges that connect an element of F to an
element outside of F . We define the edge expansion ratio h(G) of the graph
G to be given by the formula

h(G) := min
F⊂V :|F |≤|V |/2

|∂F |
|F |

,
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where F ranges over all subsets of V of cardinality at most4 |F | ≤ |V |/2.
The quantity h(G) can be interpreted as a type of isoperimetric constant for
G, analogous to the Cheeger constant [Ch1970] of a compact Riemannian
manifold, and so h(G) is sometimes known as the Cheeger constant of the
graph G.

Note that h(G) is non-zero precisely when G is connected. (If G is
disconnected, at least one of the components F will have cardinality less
than |V |/2.) We have an analogous statement for one-sided expansion:

Proposition 1.2.1 (Weak discrete Cheeger inequality). Let k ≥ 1, and let
Gn be a family of finite k-regular graphs. Then the following are equivalent:

(i) Gn form a one-sided expander family.

(ii) There exists c > 0 such that h(Gn) ≥ c for all sufficiently large n.

Proof. Let n be a large number. We abbreviate Gn as G = (V,E).

We first establish the easy direction of this proposition, namely that
(i) implies (ii). If n is large enough, then from the hypothesis (i) we have
λ2 ≤ (1− ε)k for some ε > 0 independent of n.

Let F be a subset of V with |F | ≤ |V |/2. We consider the quantity

(1.1) 〈A1F , 1F 〉`2(V ).

We split 1F into a multiple |F ||V |1 of the first eigenvector 1, plus the remainder

1F − |F ||V |1, Using the spectral decomposition of A, we can upper bound (1.1)

by

k

∥∥∥∥ |F ||V |1
∥∥∥∥2

`2(V )

+ (1− ε)k
∥∥∥∥1F −

|F |
|V |

1

∥∥∥∥2

`2(V )

which after a brief calculation evaluates to

(1− ε)k|F |+ εk
|F |2

|V |
≤ (1− ε/2)k|F |.

On the other hand, (1.1) is also equal to the number of (ordered) pairs
of adjacent vertices v, w ∈ F . Since each v ∈ F is adjacent to exactly k
vertices, we conclude that there are at least εk|F |/2 pairs v, w such that
v ∈ F and w 6∈ F . Thus

|∂F | ≥ ε|F |/2,
and so h(Gn) ≥ ε/2, and the claim (ii) follows.

Now we establish the harder direction, in which we assume (ii) and prove
(i). Thus we may assume that h(G) ≥ c for some c > 0 independent of n.

4Some upper bound on F is needed to avoid this quantity from degenerating, since ∂F
becomes empty when F = V .
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The difficulty here is basically that the hypothesis (ii) only controls
the action A1F of A on indicator functions 1F , whereas the conclusion (ii)
basically requires us to understand Af for arbitrary functions f ∈ `2(V ).
Indeed, from the spectral decomposition one has

λ2 = sup
f :‖f‖`2(V )=1;〈f,1〉`2(V )=0

〈Af, f〉`2(V )

so it suffices to show that

(1.2) 〈Af, f〉`2(V ) ≤ (1− ε)k,

whenever f ∈ `2(V ) has norm one and mean zero, and ε > 0 is independent
of n. Since A has real matrix coefficients, we may assume without loss of
generality that f is real.

The mean zero hypothesis is needed to keep the function f away from 1,
but it forces f to change sign. It will be more convenient to first establish a
variant of (1.2), namely that

(1.3) 〈Af, f〉`2(V ) ≤ (1− c)k‖f‖2`2(V )

whenever f is non-negative and supported on a set of cardinality at most
|V |/2.

Let us assume (1.3) for now and see why it implies (1.2). Let f ∈
`2(V ) have norm one and mean zero. We split f = f+ − f− into positive
and negative parts, where f+, f− are non-negative with disjoint supports.
Observe that 〈Af+, f−〉`2(V ) = 〈Af−, f+〉`2(V ) is positive, and so

〈Af, f〉`2(V ) ≤ 〈Af+, f+〉`2(V ) + 〈Af−, f−〉`2(V ).

Also we have

1 = ‖f+‖2`2(V ) + ‖f−‖2`2(V ).

At least one of f+ and f− is supported on a set of size at most |V |/2. By
symmetry we may assume that f− has this small support. Let σ > 0 be a
small quantity (depending on c) to be chosen later. If f− has `2(V ) norm
at least σ, then applying (1.3) to f− (and the trivial bound 〈Af, f〉`2(V ) ≤
k‖f‖2`2(V ) for f+) we have

〈Af, f〉`2(V ) ≤ (1− cσ2)k

which would suffice. So we may assume that f− has norm at most σ. By
Cauchy-Schwarz, this implies that

∑
x∈V f−(x) ≤ σ|V |1/2, and thus (as f

has mean zero)
∑

x∈V f+(x) ≤ σ|V |1/2. Ordering the values f+(x) and
applying Markov’s inequality, we see that we can split f+ as the sum of a
function f ′+ supported on a set of size at most |V |/2, plus an error of `2
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norm O(σ). Applying (1.3) to f ′+ and f− and using the triangle inequality
(and Cauchy-Schwarz) to deal with the error term, we see that

〈Af, f〉`2(V ) ≤ (1− c+O(σ))k

which also suffices (if σ is sufficiently small).

It remains to prove (1.3). We use the “wedding cake” decomposition,
writing f as an integral

f =

∫ ∞
0

1Ft dt

where Ft := {x ∈ V : |f(x)| > t}. By construction, all the Ft have cardinal-
ity at most |V |/2 and are non-increasing in t. Also, a computation of the `2

norm shows that

(1.4) ‖f‖2`2(V ) =

∫ ∞
0

2t|Ft| dt.

Expanding 〈Af, f〉`2(V ) and using symmetry, we obtain

2

∫ ∞
0

∫ t

0
〈A1Fs , 1Ft〉 dsdt.

We can bound the integrand in two ways. Firstly, since A1Fs is bounded by
k, one has

〈A1Fs , 1Ft〉 ≤ k|Ft|.
Secondly, we may bound 〈A1Fs , 1Ft〉 by 〈A1Fs , 1Fs〉.

On the other hand, from the hypothesis h(G) ≥ c we see that |∂Fs| ≥
c|Fs|, and hence

〈A1Fs , 1Ft〉 ≤ (k − c)|Fs|.
We insert the first bound for s ≤ (1−ε)t and the second bound for (1−ε)t <
s ≤ t, for some ε > 0 to be determined later, and conclude that

〈Af, f〉`2(V ) ≤ 2

∫ ∞
0

k(1− ε)t|Ft| dt+ 2

∫ ∞
0

∫ t

(1−ε)t
(k − c)|Fs| dsdt.

Interchanging the integrals in the second integral, we conclude that

〈Af, f〉`2(V ) ≤ 2

∫ ∞
0

k(1− ε)t|Ft| dt+ 2

∫ ∞
0

(k − c) ε

1− ε
s|Fs| ds.

For ε small enough, one can check that k(1− ε) + (k− c) ε
1−ε < k(1− ε′) for

some ε′ > 0 depending only on ε, k, c, and the claim (1.3) then follows from
(1.4). �

Example 1.2.2. The graphs in Exercise 1.1.3 contain large sets with small
boundary (e.g. {1, . . . ,m} mod n for 1 ≤ m ≤ n/2), which gives a non-
spectral way to establish that they do not form an expander family.
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Exercise 1.2.1. Show that if k ≤ 2, then the only expander families of
k-regular graphs are those families of bounded size (i.e. the vertex sets Vn
have cardinality bounded in n).

Remark 1.2.3. There is a more precise relationship between the edge ex-
pansion ratio h(G) and the best constant ε that makes G a one-sided ε-
expander, namely the discrete Cheeger inequality

(1.5)
ε

2
k ≤ h(G) ≤

√
2εk,

first proven in [Do1984] and [AlMi1985] (see also [Al1996]), based on
the continuous isoperimetric inequalities in [Ch1970], [Bu1982]. The first
inequality in (1.5) is already implicit in the proof of the above lemma, but
the second inequality is more difficult to establish. However, we will not use
this more precise inequality here.

There is an analogous criterion for two-sided expansion, but it is more
complicated to state. Here is one formulation that is quite useful:

Exercise 1.2.2 (Expander mixing lemma). Let G(V,E) be a k-regular
graph on n vertices which is a two-sided ε-expander. Show that for any
subsets F1, F2 of V , one has∣∣∣∣|E(F1, F2)| − k

n
|F1||F2|

∣∣∣∣ ≤ (1− ε)k
√
|F1||F2|.

(Actually, the factors |F1|, |F2| on the right-hand side can be refined slightly

to |F1| − |F1|2
n and |F2| − |F2|2

n respectively.)

Thus, two-sided expanders behave analogously to the pseudorandom
graphs that appear in the Szemerédi regularity lemma [Sz1978] (but with
the caveat that expanders are usually sparse graphs, whereas pseudorandom
graphs are usually dense).

Here is variant of the above lemma that more closely resembles Propo-
sition 1.2.1.

Exercise 1.2.3. Let k ≥ 1, and let Gn be a family of finite k-regular graphs.
Show that the following are equivalent:

(i) Gn form a two-sided expander family.

(ii) There exists c > 0 such that whenever n is sufficiently large and
F1, F2 are subsets of Vn of cardinality at most |Vn|/2, then |E(F1, F2)| ≤
(k − c)

√
|F1||F2|.

The exercises below connect expansion to some other graph-theoretic
properties. On a connected graph G, one can define the graph metric d : G×
G→ R+ by defining d(v, w) to be the length of the shortest path from v to
w using only edges of G. This is easily seen to be a metric on G.
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Exercise 1.2.4 (Expanders have low diameter). Let G be a k-regular graph
on n vertices that is a one-sided ε-expander for some n > k ≥ 1 and ε > 0.
Show that there is a constant c > 0 depending only on k and ε such that
for every vertex v ∈ V and any radius r ≥ 0, the ball B(v, r) := {w ∈ V :
d(v, w) ≤ r} has cardinality

|B(v, r)| ≥ min((1 + c)r, n).

(Hint: first establish the weaker bound |B(v, r)| ≥ min((1 + c)r, n/2).) In
particular, G has diameter O(log n), where the implied constant can depend
on k and ε.

Exercise 1.2.5 (Expanders have high connectivity). Let G be a k-regular
graph on n vertices that is a one-sided ε-expander for some n > k ≥ 1 and
ε > 0. Show that if one removes m edges from G for some m ≥ 0, then the
resulting graph has a connected component of size at least n − Cm, where
C depends only on k and ε.

Exercise 1.2.6 (Expanders have high chromatic number). Let G be a k-
regular graph on n vertices that is a two-sided ε-expander for some n > k ≥ 1
and ε > 0.

(i) Show that any independent set5 in G has cardinality at most (1−
ε)n.

(ii) Show that the chromatic number6 of G is at least 1
1−ε . (Of course,

this bound only becomes non-trivial for ε close to 1; however, it
is still useful for constructing bounded-degree graphs of high chro-
matic number and large girth7.)

Exercise 1.2.7 (Expansion and concentration of measure). Let G be a k-
regular graph on n vertices that is a one-sided ε-expander for some n > k ≥ 1
and ε > 0. Let f : G → R be a function which is Lipschitz with some
Lipschitz constant K, thus |f(v) − f(w)| ≤ Kd(v, w) for all v, w ∈ V . Let
M be a median value of f (thus f(v) ≥ M for at least half of the vertices
v, and f(v) ≤ M for at least half the vertices v; note that the median may
be non-unique in some cases.) Show that

|{v ∈ V : |f(v)−M | ≥ λK}| ≤ Cn exp(−cλ)

for all λ > 0 and some constants C, c > 0 depending only on k, ε.

5A set of vertices in a graph G is independent if there are no edges in G that connect two

elements in this set.
6The chromatic number of a graph G is the fewest number of colours needed to colour the

vertices of the graph in such a way that no two vertices of the same colour are connected by an
edge.

7The girth of a graph is the length of the shortest cycle in the graph, or infinity if the graph
does not contain any cycles.
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1.3. Random walks on expanders

We now discuss a connection between expanders and random walks, which
will be of particular importance in this text as a tool for demonstrating
expansion. Given a k-regular graph G for some k ≥ 1, and an initial vertex
v0 ∈ G, we define the random walk on G starting at v0 to be a random
sequence v0, v1, v2, . . . of vertices in G defined recursively by setting, once
v0, . . . , vi have been chosen, vi+1 to be one of the k neighbours of vi, chosen
at random8. For each i, let µ(i) : G→ R+ be the probability distribution of
vi, thus

µ(i)(v) = P(vi = v).

Thus µ(0) is the Dirac mass δv0 at v0, and we have the recursion

µ(i+1) =
1

k
Aµ(i)

and thus

µ(i) = k−iAiδv0 .

Among other things, this shows that the quantity ‖µ(i) − 1
|Vn|‖`2(Vn),

which measures the extent to which vi is uniformly distributed, is non-
increasing in i. The rate of this decrease is tied to the expansion properties
of the graph:

Exercise 1.3.1. Let k ≥ 1, and let Gn = (Vn, En) be a family of finite
k-regular graphs. Let α > 1/2. Show that the following are equivalent:

(i) The Gn are a two-sided expander family.

(ii) There is a C > 0 independent of n, such that for all sufficiently

large n one has ‖µ(i) − 1
|Vn|‖`2(Vn) ≤ |Vn|−α for all i ≥ C log |Vn|,

and all choices of initial vertex v0.

Informally, the above exercise asserts that a two-sided expander on n
vertices is one for which random walks (from an arbitrary starting point)
become very close to uniform in just O(log n) steps. (Compare with, say,
the graphs in Exercise 1.1.3, in which the random walks do not come close to
mixing until time well beyond n2, as indicated by the central limit theorem.)
This rapid mixing is useful for many applications; for instance, it can be
used in computer science to generate almost perfectly uniformly distributed
random elements of various interesting sets (e.g. elements of a finite group);

8The existence of such a random process can be easily justified by using the Kolmogorov

extension theorem, see e.g. [Ta2011, Theorem 2.4.3]. Alternatively, one can select a random real
number from [0, 1] and express it in base k, obtaining an infinite string of digits in {0, . . . , k − 1}
that can be used (after arbitrarily ordering the edges emenating from each vertex in G) to generate
the random sequence v0, v1, . . ..
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see [HoLiWi2006] for more discussion. It is also useful in number theory
to facilitate certain sieving estimates, as will be discussed in Chapter 7.

Remark 1.3.1. In the above exercise, we assumed that the initial vertex
v0 was deterministic rather than random. However, it is easy to see (from
Minkowski’s inequality) that the exercise also holds if we permit v0 to be
drawn from an arbitrary probability distribution on Vn, rather than being a
single deterministic vertex. Thus one can view the uniform distribution in a
two-sided expander to be a very strong attractor for all the other probability
distributions on the vertex set.

Remark 1.3.2. The `2 norm is the most convenient norm to use when using
the spectral theorem, but one can certainly replace this norm if desired by
other norms (e.g. the `1 norm, which in this finite setting is the same thing
as the total variation norm), after adjusting the lower bound of A slightly,
since all norms on a finite-dimensional space are equivalent (though one
typically has to concede some powers of |Vn| to attain this equivalency).
One can also use some other norm-like quantities here to measure distance
to uniformity, such as Shannon entropy, although we will not do so here.

Note that for graphs that are only one-sided expanders instead of two-
sided expanders, the random walk is only partially mixing, in that the prob-
ability distribution tends to flatten out rapidly, but not converge as rapidly
(or at all) to the uniform distribution. For instance, in the case of the
complete bipartite graph Kn/2,n/2, it is clear that the random walk simply
alternates between the two vertex sets of size n/2 in the bipartite graph (al-
though it is uniformly distributed in each set). But this lack of rapid mixing
can be dealt with by replacing the random walk with the lazy random walk
w0, w1, w2, . . ., which is defined similarly to the random walk v0, v1, v2, . . .
except that wi+1 is only set equal to a randomly chosen neighbour of wi
with probability 1/2, and remains equal to wi with probability 1/2. (One
can also select other probabilities here than 1/2, as this will not significantly
affect the exercise below.) Indeed, we have:

Exercise 1.3.2. Let k ≥ 1, and let Gn = (Vn, En) be a family of finite
k-regular graphs. Let α > 1/2. Show that the following are equivalent:

(i) The Gn are a one-sided expander family.

(ii) There is a C > 0 independent of n, such that for all sufficiently

large n one has ‖ν(i) − 1
|Vn|‖`2(Vn) ≤ |Vn|−α for all i ≥ C log n, and

all choices of initial vertex w0, where ν(i) is the law of the random
walk wi.
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1.4. Random graphs as expanders

We now turn to the task of constructing expander families of k-regular
graphs. The first result in this direction was by Pinsker [Pi1973] (with a
closely related result also established by Barzdin and Kolmogorov [KoBa1967]),
who showed that if one chose a k-regular graph on n vertices randomly, and
then sent n to infinity along a sufficiently sparse sequence, the resulting se-
quence would be almost surely9 be an expander family. We will not quite
prove this result here (because it requires some understanding of the prob-
ability distribution of k-regular graphs, which has some subtleties as the
parity obstruction already indicates), but establish a closely related result,
in which k is restricted to be even (to avoid parity problems) and sufficiently
large (for convenience) and the k-regular graph is drawn from a slightly non-
uniform distribution.

Before we do this, though, let us perform a heuristic computation as
to why, when k is fixed but large, and n goes to infinity, one expects a
“random” k-regular graph G = (V,E) on n vertices to be an expander. For
simplicity, we work with the one-sided expansion condition. By Proposition
1.2.1, we would then like to say that with high probability, one has

|∂F | ≥ c|F |

for all F ⊂ V with cardinality at most n/2, and some c > 0 independent
of n. An equivalent formulation would be to say that the neighbourhood
N(F ) of F has to have cardinality at least (1 + c′)|F | for all F ⊂ V with
cardinality at most n/2, and some c′ > 0 independent of n. Thus, we wish
to exclude the possibility that there are sets F ⊂ F ′ ⊂ V with |F | ≤ n/2
and |F ′| ≤ (1 + c′)|F |, for which all the edges starting from F end up in F ′.

To bound this failure probability, we use the union bound: we try each
pair F, F ′ in turn, bound the probability that the claim follows for that
particular value of F, F ′, and then sum in F, F ′. The goal is to obtain a
total probability bound of on→∞;k(1), that goes to zero as n→∞ for fixed
k.

Accordingly, pick 1 ≤ r ≤ n/2, and then pick F ⊂ V of cardinality r, and
then F ⊂ F ′ ⊂ V of cardinality r + r′, where r′ := bc′rc+ 1 for some small
constant c′ > 0 to be chosen later. For each fixed r, there are n!

r!r′!(n−r−r′)!
choices of F and F ′. For each F, F ′, there are kr edges emenating from F .
Intuitively, if we choose the graph randomly, each edge has a probability
about r+r′

n of landing back in F ′, so the probability that they all do is about

9Here, of course, one needs to avoid the parity obstruction that one cannot have a k-regular
graph on n vertices if k and n are both odd.
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( r+r
′

n )kr. So the failure rate should be about

∑
1≤r≤n/2

n!

r!r′!(n− r − r′)!

(
r + r′

n

)kr
.

We can bound n!
r!r′!(n−r−r′)! somewhat crudely as nr+r

′

(r+r′)!O(1)r. Applying

Stirling’s formula, we obtain a bound of∑
1≤r≤n/2

O(1)r
(
r + r′

n

)kr−r−r′
.

For c small enough, (r + r′)/n is less than 0.6 (say), and then (for k large
enough) we see that this series is bounded by on→∞;k(1) as required.

Now we turn to the rigorous construction of random expander graphs.
We will assume that k is a large (but fixed) even integer, k = 2l. To
build a 2l-regular graph on n vertices {1, . . . , n}, what we will do is pick l
permutations π1, . . . , πl : {1, . . . , n} → {1, . . . , n}, and let G be the graph
formed by connecting v to πi(v) for all v ∈ {1, . . . , n} and i = 1, . . . , l. This
is not always a 2l-regular graph, but we will be able to show the following
two claims (if k is large enough):

Proposition 1.4.1 (G can be k-regular). The graph G is 2l-regular with
probability at least c− on→∞;k(1), where c > 0 depends only on k.

Proposition 1.4.2 (G usually expands). There is an ε > 0 depending only
on k = 2l, such that the probability that G is 2l-regular but not a one-sided
ε-expander is on→∞;k(1).

Putting these two propositions together, we conclude

Corollary 1.4.3. With probability at least c− on→∞;k(1), G is a 2l-regular
one-sided ε-expander.

In particular, this allows us to construct one-sided expander families of
k-regular graphs for any fixed large even k.

Remark 1.4.4. If one allowed graphs to have multiple edges and loops,
then it would be possible to dispense with the need for Proposition 1.4.1,
and show that G (now viewed as a 2l-regular graph with multiple edges
and loops) is a one-sided ε-expander with probability 1− on→∞;k(1). (This
requires extending results such as the weak discrete Cheeger inequality to
the case when there are multiple edges and loops, but this turns out to
be straightforward.) However, we will not do so here as it requires one to
introduce a slight amount of additional notation.
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Let us prove Proposition 1.4.2 first, which will follow the informal sketch
at the beginning of this section. By Proposition 1.2.1, it suffices to show
that there is a c > 0 depending only on k such that the probability that G is
2l-regular with h(G) ≤ c is on→∞;k(1). As in the sketch, we first bound for
each 1 ≤ r ≤ n/2 and F ⊂ F ′ ⊂ {1, . . . , n} with |F | = r and |F ′| = r + r′,
where r′ := bcrc + 1, the probability that all the edges from F end up in
F ′. A necessary condition for this to occur is that πi(F ) ⊂ F ′ for each
i = 1, . . . , k. For each i, and for fixed r, F, F ′, the probability that the
random permutation πi does this is(

r+r′

r

)(
n
r

) ≤ (r + r′

n

)r
so the total failure probability can be bounded by

∑
1≤r≤n/2

n!

r!r′!(n− r − r′)!

(
r + r′

n

)kr/2
which is acceptable as discussed previously.

Now we turn to Proposition 1.4.1. We observe that G will be 2l-regular
unless there are distinct i, j and a vertex v ∈ {1, . . . , n} such that either
πi(v) = πj(v), πi(v) = π−1

j (v), πi(v) = v, or πi(v) = π−1
i (v) (as such cases

lead to repeated edges or loops). Unfortunately, each of these events can
occur with a fairly sizeable probability (e.g. for each i, j, the probability
that πi(v) = πj(v) for some v is about 1 − 1/e, by the classical theory
of derangements), so the union bound is not enough here. Instead, we
will proceed by an interpolant between the union bound and the inclusion-
exclusion formula, known as the Bonferroni inequalities:

Exercise 1.4.1 (Bonferroni inequalities).

(i) Show that if n, k ≥ 0 are natural numbers, that

k∑
j=0

(−1)j
(
n

j

)
≥ 1n=0

when k is even, and

k∑
j=0

(−1)j
(
n

j

)
≤ 1n=0

when k is odd, where we adopt the convention that
(
n
j

)
= 0 when

j > n.
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(ii) Show that if N, k ≥ 0 and E1, . . . , EN are events, then

k∑
j=0

(−1)j
∑

1≤i1<...<ij≤N
P(Ei1 ∩ . . . ∩ Eij ) ≥ P

 N⋃
i=1

Ei


when k is even, and

k∑
j=0

(−1)j
∑

1≤i1<...<ij≤N
P(Ei1 ∩ . . . ∩ Eij ) ≤ P

 N⋃
i=1

Ei


when k is odd. (Note that the k = 1 case of this inequality is
essentially the union bound, and the k = N case is the inclusion-
exclusion formula.) Here we adopt the convention that the empty
intersection occurs with probability 1.

We return to the proof of Proposition 1.4.1. By a conditioning argument,
it suffices to show the following:

Proposition 1.4.5. Let 1 ≤ i ≤ k, and suppose that the permutations
π1, . . . , πi−1 have already been chosen (and are now viewed as fixed deter-
ministic objects). Let πi : {1, . . . , n} → {1, . . . , n} be a permutation cho-
sen uniformly at random. Then with probability at least c − on→∞;k(1) for

some c > 0 depending only on k, one has πi(v) 6= πj(v), v, π−1
i (v) for all

v ∈ {1, . . . , n} and j = 1, . . . , i− 1.

It remains to establish Proposition 1.4.5. We modify an argument of
Bollobas [Bo2001], based on some technical counting asymptotics which
we defer to the exercises. Consider the set Ω ⊂ {1, . . . , n} × {1, . . . , n} of
pairs

Ω := {(v, πj(v)) : v = 1, . . . , n; j = 1, . . . , i− 1}
∪ {(v, πj(v)−1) : v = 1, . . . , n; j = 1, . . . , i− 1}
∪ {(v, v) : v = 1, . . . , n}.

Each pair (v, w) in Ω gives rise to a bad event E(v,w) := (πi(v) = w). Each

pair (v, w) ∈ {1, . . . , n}2\Ω gives rise to another bad event

E(v,w) := (πi(v) = w) ∧ (π(w) = v).

Note that E(v,w) = E(w,v) for (v, w) ∈ {1, . . . , n}2\Ω. To avoid this collision
problem, we work in the space

Ω′ := Ω ∪ {(v, w) ∈ {1, . . . , n}2\Ω : v < w}.
Our task is now to show that

P

( ⋃
s∈Ω′

Es

)
≥ c− on→∞;k(1).
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It is easy to check (by direct counting arguments) that

(1.6) P(Es) =
1

n
+O

(
1

n2

)
for s ∈ Ω, and

(1.7) P(Es) =
1

n2
+O

(
1

n3

)
.

for s 6∈ Ω′. In particular, if we set

α :=
∑
s∈Ω′

P(Es)

then we have

α = 2i− 1

2
+O

(
1

n

)
.

More generally, for any fixed j, the same sort of counting arguments
(which we leave as an exercise) the approximate independence

(1.8) P(Es1 ∩ . . . ∩ Esj ) = (1 +Oj,k

(
1

n

)
)P(Es1) . . .P(Esj )

whenever s1 = (v1, w1), . . . , sj = (vj , wj) are distinct elements of Ω′ with
the disjointness property {vi, wi} ∩ {vi′ , wi′} = ∅ for all 1 ≤ i < i′ ≤ j. If
the disjointness property fails, we can still obtain the weaker bound

(1.9) P(Es1 ∩ . . . ∩ Esj ) = Oj,k(P(Es1) . . .P(Esj )).

(The subscripts in the O()-notation indicate that the implied constant in
that notation can depend on the subscripted parameters.) Summing this,
we conclude that

(1.10)
∑

s1,...,sj∈Ω′, distinct

P(Es1 ∩ . . . ∩ Esj ) = αj +Oj,k

(
1

n

)

and thus by the Bonferroni inequalities

P(

2in⋃
s=1

Es) ≥
m∑
j=1

(−1)j−1α
j

j!
+Om,k

(
1

n

)
for any odd m. But from Taylor series expansion, the sum on the right-hand
side converges to the positive quantity e−α, and the claim follows by taking
m to be a sufficiently large odd number depending on k.

Exercise 1.4.2. Verify the estimates (1.6), (1.8), (1.9), (1.10).
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Remark 1.4.6. Another way to establish Proposition 1.4.1, via the “swap-
ping method”, was pointed out to me by Brendan McKay. The key obser-
vation is that if l permutations π1, . . . , πl have m problematic edges (i.e.
edges that are either repeated or loops), and then one applies m random
transpositions to the π1, . . . , πl (as selected at random), then with proba-
bility �m n−m (if n is sufficiently large depending on m), all problematic
edges are erased and one obtains a random regular graph. Conversely, if one
starts with a random regular graph and applies m random transpositions,
the probability of obtaining m problematic edges as a result is Om(n−m).
Combining the two facts, we see that pm is the probability of having m prob-
lematic edges, then p0 � pm for each fixed m (and n sufficiently large de-
pending on m). Since the expected number of problematic edges is bounded,
the desired bound p0 � 1 then follows from Markov’s inequality and the pi-
geonhole principle.

Exercise 1.4.3. Show that “one-sided” can be replaced with “two-sided”
in Proposition 1.4.2 and hence in Corollary 1.4.3.

Remark 1.4.7. It turns out that the random k-regular graphs formed by
taking l permutations as indicated above, and conditioning on the event
that there are no “collisions” (so that one genuinely gets a k-regular graph)
does not quite give a uniform distribution on the k-regular graphs. However,
it is close enough to one that any property which is true with probability
1 − on→∞;k(1) for this model of random k-regular graph, is also true with
probability 1−on→∞;k(1) for uniform k-regular graphs, and conversely. This
fact (known as contiguity of the two random models, and analogous to the
concept of mutually absolutely continuous measures in measure theory) is
established for instance in [Wo1999]. As a consequence of this fact (and a
more refined version of the above analysis), one can show that 1−on→∞;k(1)
of all k-regular graphs on n vertices are ε-expanders for some ε = εk > 0 if
k ≥ 3 (assuming of course the parity requirement that nk be even, otherwise
there are no k-regular graphs at all).



Chapter 2

Expansion in Cayley
graphs, and Kazhdan’s
property (T)

In Chapter 1 we introduced the notion of expansion in arbitrary k-regular
graphs. For the rest of the text, we will now focus attention primarily to a
special type of k-regular graph, namely a Cayley graph.

Definition 2.0.8 (Cayley graph). Let G = (G, ·) be a group, and let S be a
finite subset of G. We assume that S is symmetric (thus s−1 ∈ S whenever
s ∈ S) and does not contain the identity 1 (this is to avoid loops). Then
the (right-invariant) Cayley graph Cay(G,S) is defined to be the graph with
vertex set G and edge set {{sx, x} : x ∈ G, s ∈ S}, thus each vertex x ∈ G is
connected to the |S| elements sx for s ∈ S, and so Cay(G,S) is a |S|-regular
graph.

Example 2.0.9. The graph in Exercise 1.1.3 is the Cayley graph on Z/NZ
with generators S = {−1,+1}.

Remark 2.0.10. We call the above Cayley graphs right-invariant because
every right translation x 7→ xg on G is a graph automorphism of Cay(G,S).
This group of automorphisms acts transitively on the vertex set of the Cayley
graph. One can thus view a Cayley graph as a homogeneous space of G, as
it “looks the same” from every vertex. One could of course also consider
left-invariant Cayley graphs, in which x is connected to xs rather than sx.
However, the two such graphs are isomorphic using the inverse map x 7→ x−1,

23
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so we may without loss of generality restrict our attention throughout to left
Cayley graphs.

Remark 2.0.11. For minor technical reasons, it will be convenient later
on to allow S to contain the identity and to come with multiplicity (i.e. it
will be a multiset rather than a set). If one does so, of course, the resulting
Cayley graph will now contain some loops and multiple edges.

For the purposes of building expander families, we would of course want
the underlying group G to be finite. However, it will be convenient at various
times to “lift” a finite Cayley graph up to an infinite one, and so we permit
G to be infinite in our definition of a Cayley graph.

We will also sometimes consider a generalisation of a Cayley graph,
known as a Schreier graph:

Definition 2.0.12 (Schreier graph). Let G be a finite group that acts (on
the left) on a space X, thus there is a map (g, x) 7→ gx from G ×X to X
such that 1x = x and (gh)x = g(hx) for all g, h ∈ G and x ∈ X. Let S be a
symmetric subset of G which acts freely on X in the sense that sx 6= x for
all s ∈ S and x ∈ X, and sx 6= s′x for all distinct s, s′ ∈ S and x ∈ X. Then
the Schreier graph Sch(X,S) is defined to be the graph with vertex set X
and edge set {{sx, x} : x ∈ X, s ∈ S}.

Example 2.0.13. Every Cayley graph Cay(G,S) is also a Schreier graph
Sch(G,S), using the obvious left-action of G on itself. The k-regular graphs
formed from l permutations π1, . . . , πl ∈ Sn that were studied in Chapter 1 is
also a Schreier graph provided that πi(v) 6= v, π−1

i (v), πj(v) for all distinct
1 ≤ i, j ≤ l, with the underlying group being the permutation group Sn
(which acts on the vertex set X = {1, . . . , n} in the obvious manner), and
S := {π1, . . . , πl, π

−1
1 , . . . , π−1

l }.

Exercise 2.0.4. If k is an even integer, show that every k-regular graph is
a Schreier graph involving a set S of generators of cardinality k/2. (Hint:
first show that every k-regular graph can be decomposed into k/2 unions of
cycles, each of which partition the vertex set, then use the previous example.)

We return now to Cayley graphs. It is easy to characterise qualitative
expansion properties of Cayley graphs:

Exercise 2.0.5 (Qualitative expansion). Let Cay(G,S) be a finite Cayley
graph.

(i) Show that Cay(G,S) is a one-sided ε-expander for G for some ε > 0
if and only if S generates G.
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(ii) Show that Cay(G,S) is a two-sided ε-expander for G for some ε > 0
if and only if S generatesG, and furthermore S intersects each index
2 subgroup of G.

We will however be interested in more quantitative expansion properties,
in which the expansion constant ε is independent of the size of the Cayley
graph, so that one can construct non-trivial expander families Cay(Gn, Sn)
of Cayley graphs.

One can analyse the expansion of Cayley graphs in a number of ways.
For instance, by taking the edge expansion viewpoint, one can study Cayley
graphs combinatorially, using the product set operation

A ·B := {ab : a ∈ A, b ∈ B}

of subsets of G.

Exercise 2.0.6 (Combinatorial description of expansion). Let Cay(Gn, Sn)
be a family of finite k-regular Cayley graphs. Show that Cay(Gn, Sn) is a
one-sided expander family if and only if there is a constant c > 0 independent
of n such that |En ∪ EnSn| ≥ (1 + c)|En| for all sufficiently large n and all
subsets En of Gn with |En| ≤ |Gn|/2.

Remark 2.0.14. Note that |En ∩Ens| = |En ∩Ens−1| for all s ∈ G. Thus
one can define combinatorial expansion for asymmetric generating sets Sn
as well, but it is equivalent to combinatorial expansion for Sn ∪ S−1

n and so
the theory is essentially the same. (See also Exercise 1.1.8, which is a related
observation connecting directed expansion with undirected expansion.)

One can also give a combinatorial description of two-sided expansion for
Cayley graphs; see Exercise 5.0.5.

Exercise 2.0.7 (Abelian groups do not expand). Let Cay(Gn, Sn) be a
family of finite k-regular Cayley graphs, with the Gn all abelian, and the Sn
generating Gn. Show that Cay(Gn, Sn) are a one-sided expander family if
and only if the Cayley graphs have bounded cardinality (i.e. supn |Gn| <∞).
(Hint: assume for contradiction that Cay(Gn, Sn) is a one-sided expander
family with |Gn| → ∞, and show by two different arguments that supn |Smn |
grows at least exponentially in m and also at most polynomially in m, giving
the desired contradiction.)

The left-invariant nature of Cayley graphs also suggests that such graphs
can be profitably analysed using some sort of Fourier analysis; as the un-
derlying symmetry group is not necessarily abelian, one should use the
Fourier analysis of non-abelian groups, which is better known as (unitary)
representation theory. The Fourier-analytic nature of Cayley graphs can
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be highlighted by recalling the operation of convolution of two functions
f, g ∈ `2(G), defined by the formula

f ∗ g(x) :=
∑
y∈G

f(y)g(y−1x) =
∑
y∈G

f(xy−1)g(y).

This convolution operation is bilinear and associative1 (at least when one
imposes a suitable decay condition on the functions, such as compact sup-
port), but is not commutative unless G is abelian. The adjacency operator
A on a Cayley graph Cay(G,S) can then be viewed as a convolution

Af = |S|µ ∗ f,
where µ is the probability density

(2.1) µ :=
1

|S|
∑
s∈S

δs

where δs is the Kronecker delta function on s. Using the spectral definition
of expansion, we thus see that Cay(G,S) is a one-sided expander if and only
if

(2.2) 〈f, µ ∗ f〉 ≤ (1− ε)‖f‖2`2(G)

whenever f ∈ `2(G) is orthogonal to the constant function 1, and is a two-
sided expander if

(2.3) ‖µ ∗ f‖`2(G) ≤ (1− ε)‖f‖`2(G)

whenever f ∈ `2(G) is orthogonal to the constant function 1.

We remark that the above spectral definition of expansion can be easily
extended to symmetric sets S which contain the identity or have multiplicity
(i.e. are multisets). (We retain symmetry, though, in order to keep the
operation of convolution by µ self-adjoint.) In particular, one can say (with
some slight abuse of notation) that a set of elements s1, . . . , sl of G (possibly
with repetition, and possibly with some elements equalling the identity)
generates a one-sided or two-sided ε-expander if the associated symmetric
probability density

µ :=
1

2l

l∑
i=1

δsi + δs−1
i

obeys either (2.2) or (2.3).

We saw in Chapter 1.3 that expansion can be characterised in terms
of random walks. One can of course specialise this characterisation to the
Cayley graph case:

1If one is more algebraically minded, one can also identify `2(G) (when G is finite, at least)

with the group algebra CG, in which case convolution is simply the multiplication operation in
this algebra.
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Exercise 2.0.8 (Random walk description of expansion). Let Cay(Gn, Sn)
be a family of finite k-regular Cayley graphs, and let µn be the associated
probability density functions. Let A > 1/2 be a constant.

(i) Show that the Cay(Gn, Sn) are a two-sided expander family if and
only if there exists a C > 0 such that for all sufficiently large n,
one has ‖µ∗mn − 1

|Gn|‖`2(Gn) ≤ 1
|Gn|A for some m ≤ C log |Gn|, where

µ∗mn := µn ∗ . . . ∗ µn
denotes the convolution of m copies of µn.

(ii) Show that the Cay(Gn, Sn) are a one-sided expander family if and
only if there exists a C > 0 such that for all sufficiently large n,
one has

‖(1

2
δ1 +

1

2
µn)∗m − 1

|Gn|
‖`2(Gn) ≤

1

|Gn|A

for some m ≤ C log |Gn|.

In this chapter, we will connect expansion of Cayley graphs to an impor-
tant property of certain infinite groups, known as Kazhdan’s property (T)
(or property (T) for short). In [Ma1973], Margulis exploited this property
to create the first known explicit and deterministic examples of expanding
Cayley graphs. As it turns out, property (T) is somewhat overpowered for
this purpose; in particular, we now know that there are many families of
Cayley graphs for which the associated infinite group does not obey prop-
erty (T) (or weaker variants of this property, such as property τ). In later
chapters we will therefore turn to other methods of creating Cayley graphs
that do not rely on property (T). Nevertheless, property (T) is of substantial
intrinsic interest, and also has many connections to other parts of mathe-
matics than the theory of expander graphs, so it is worth spending some
time to discuss it here.

The material here is based in part on [BedeVa2008].

2.1. Kazhdan’s property (T)

Kazhdan’s property (T) is a representation-theoretic property of groups. Al-
though we will primarily be interested in finite groups (such as SLd(Z/pZ)),
or at least discrete, finitely generated groups (such as SLd(Z)), it will be
convenient to work in the more general category of locally compact groups
which includes discrete finitely generated groups, but also Lie groups (such
as SLd(R)) as examples. For minor technical reasons we will restrict at-
tention to locally compact groups G that are Hausdorff, second countable,
and compactly generated (so that there is a compact set S that gener-
ates G as a group, as is for instance the case for discrete finitely generated
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groups). We shall therefore abuse notation and abbreviate “locally compact
second countable Hausdorff compactly generated group” as “locally compact
group”. One can extend the study of property (T) to more general classes of
groups than these, but this class will be sufficient for our applications, while
avoiding some technical subtleties that are not relevant for our purposes.

We will focus on a particular type of representation of locally compact
groups, namely a unitary representation.

Definition 2.1.1 (Unitary representation). Let G be a locally compact
group. A unitary representation (or representation, for short) of G is a
(complex) separable Hilbert space H (possibly infinite dimensional), to-
gether with a homomorphism ρ : G → U(H) from G to the group U(H)
of unitary transformations on H. Furthermore, we require ρ to be con-
tinuous, where we give U(H) the strong operator topology ; thus the map
g 7→ ρ(g)v is continuous for each v ∈ H. We often abuse notation and refer
to ρ (rather than the pair (ρ,H)) as the representation of G.

Two unitary representations ρ : G → U(H), ρ′ : G → U(H ′) are iso-
morphic if there is a Hilbert space isomorphism φ : H → H ′ such that
ρ′(g) ◦ φ = φ ◦ ρ(g) for all g ∈ G. When one has such an isomorphism,
we write ρ ≡ ρ′.

Note that if G is a discrete group, then the continuity hypothesis is
automatic and can be omitted. One could easily turn the space of unitary
representations of a fixed group G into a category by defining the notion
of a morphism between two unitary representations that generalises the
notion of an isomorphism given above (basically by replacing “Hilbert space
isomorphism” with “Hilbert space isometry”), but we will not need to do
so here. One could also consider inseparable Hilbert space representations,
but for minor technical reasons it will be convenient to restrict attention to
the separable case2.

Example 2.1.2 (Trivial representation). Any locally compact group G acts
trivially on any Hilbert space H by defining ρ(g) to be the identity on H
for all g ∈ G.

Example 2.1.3 (Regular representation). If G is a discrete group, then we
have the (left) regular representation τ : G → U(`2(G)) of G, in which the
Hilbert space is `2(G), and the action is given by the formula

τ(g)f(x) := f(g−1x) = δg ∗ f(x)

2Note that G, being second countable, is separable, and so any orbit {gv : g ∈ G} of a vector

v in a Hilbert space is automatically contained in a separable subspace. As such, one can usually
restrict without loss of generality to separable Hilbert spaces in applications.
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for g ∈ G and x ∈ G. (Note that the g−1 here is needed to make τ a
homomorphism.) This is easily verified to be a unitary representation. One
can also consider the right-regular representation that takes f(x) to f(xg),
but this is easily seen to be isomorphic to the left-regular representation and
will not be needed here.

More generally, if G is a locally compact group equipped with a left-
invariant Haar measure µ (that is to say, a Radon measure which is invariant
with respect to left translations), one can define the (left) regular represen-
tation τ on3 L2(G, dµ) by setting τ(g)f(x) := f(g−1x) for all f ∈ L2(G, dµ).

Example 2.1.4 (Quasiregular representation). If (X,µ) is a measure space
that G acts on in a transitive measure-preserving fashion, then we have
the (left) quasiregular representation τX : G → U(L2(X,µ)), in which the
Hilbert space is L2(X,µ), and the action is given by the formula

τX(g)f(x) := f(g−1x)

for g ∈ G and x ∈ X. Of course, the regular representation can be viewed as
a special case of a quasiregular representation, as can the one-dimensional
trivial representation.

Example 2.1.5 (Direct sum). If ρ1 : G → U(H1) and ρ2 : G → U(H2) are
unitary representations of a locally compact group G, then their direct sum
ρ1 ⊕ ρ2 : G→ U(H1 ⊕H2) is also a unitary representation, where H1 ⊕H2

is the Hilbert space of all formal sums v1 ⊕ v2 with v1 ∈ H1 and v2 ∈ H2

with the inner product

〈v1 ⊕ v2, w1 ⊕ w2〉H1⊕H2 := 〈v1, w1〉H1 + 〈v2, w2〉H2

and the representation ρ1 ⊕ ρ2 is given by the formula

(ρ1 ⊕ ρ2)(g)(v1 ⊕ v2) := (ρ1(g)v1)⊕ (ρ2(g)v2).

One can also form the direct sum of finitely many or even countably4 many
unitary representations in a similar manner; we leave the details to the
reader.

Example 2.1.6 (Subrepresentation). If ρ : G→ U(H) is a unitary represen-
tation of a locally compact group G, and H ′ is a closed subspace of H which
is G-invariant (thus ρ(g)H ′ ⊂ H ′ for all g ∈ G), then we can form the re-
striction ρ �H′ : G→ U(H ′) of ρ to H ′, defined by setting ρ �H′ (g)v := ρ(g)v
for all g ∈ G and v ∈ H ′. This is easily seen to also be a unitary represen-
tation, and is known as a subrepresentation of ρ. By unitarity, we see that

3Note that L2(G, dµ) will be separable because we are assuming G to be second countable.

For a review of the theory of Haar measure (and in particular, a proof that any locally compact
group has a Haar measure, unique up to scalar multiplication), see [Ta2013, §1.4].

4There is also a construction to combine uncountably many such representations, known as
the direct integral, but we will not need it here.
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the orthogonal complement (H ′)⊥ of H ′ in H is an invariant space, leading
to the complementary subrepresentation ρ �(H′)⊥ . One easily verifies the
isomorphism

ρ ≡ ρ �H′ ⊕ρ �(H′)⊥ .

Example 2.1.7 (Invariant vectors). If ρ : G→ U(H) is a unitary represen-
tation of a locally compact group G, then the space HG := {v ∈ H : ρ(g)v =
v for all g ∈ G} of G-invariant vectors in H is a closed invariant subspace
of H. By the preceding example, we thus have the decomposition

ρ ≡ ρ �HG ⊕ρ �(HG)⊥

into a trivial representation ρ �HG , and a representation ρ �(HG)⊥ with no

non-trivial invariant vectors. (Indeed, this is the only such decomposition up
to isomorphism; we leave this as an exercise to the reader.) For instance, if G
is a finite group and we consider the regular representation τ (so H = `2(G)),
then HG is the one-dimensional space of constants C, while (HG)⊥ is the
space `2(G)0 of functions of mean zero, so we have the decomposition

τ ≡ C⊕ τ �`2(G)0 .

Note that if G is an infinite discrete group, then there are already no non-
trivial invariant vectors in `2(G) (why?), so the decomposition in this case
is trivial:

τ ≡ 0⊕ τ �`2(G) .

We now make a key definition of a Kazhdan constant, which is analogous
to the expansion constant of a Cayley graph.

Definition 2.1.8 (Kazhdan constant). Let ρ : G → U(H) be a unitary
representation of a locally compact group G, and let S be a compact subset
of G. The Kazhdan constant Kaz(G,S, ρ) of S and ρ is then the supremum
of all the constants ε ≥ 0 for which one has the bound

sup
s∈S
‖ρ(s)v − v‖H ≥ ε‖v‖H

for all v ∈ H. Thus, for instance, Kaz(G,S, ρ) vanishes whenever the rep-
resentation ρ contains non-trivial invariant vectors. The Kazhdan constant
Kaz(G,S) of S is defined as

Kaz(G,S) := inf
ρ

Kaz(G,S, ρ),

where ρ ranges over all unitary representations of G with no non-trivial
invariant vectors. A group G is said to have Kazhdan property (T) if one
has Kaz(G,S) > 0 for at least one compact set S.
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Thus, if G has Kazhdan property (T), then one can find at least one
compact set S and some ε > 0 with the property that for every representa-
tion unitary ρ : G → U(H) with no non-trivial invariant vectors, and every
v ∈ H, one can find s ∈ S such that ‖ρ(s)v−v‖H ≥ ε‖v‖H . Thus, we have a
dichotomy: either a representation contains invariant vectors, or every vec-
tor in the representation is moved by a non-trivial amount by some “small”
element of G.

Example 2.1.9. Later on in this text, we will show that SLd(Z) and SLd(R)
have property (T) if and only if d ≥ 3. We will also see that a free non-
abelian group Fk on k generators will never have property (T), and also no
finitely generated infinite abelian group will have property (T).

Exercise 2.1.1. Show that every finite group G has property (T). (Hint:
first show that every vector v in a unitary representation is contained in a
subrepresentation of dimension at most |G|, and that all the unitary maps
ρ(g) have order at most |G|.) Later on, we shall establish the stronger
statement that every compact group has property (T).

We record some basic properties of the Kazhdan constants:

Exercise 2.1.2. Let G be a locally compact group, let ρ : G→ U(H) be a
representation, and let S, S′ be compact subsets of G.

(i) If S ⊂ S′, then Kaz(G,S, ρ) ≤ Kaz(G,S′, ρ) and Kaz(G,S) ≤
Kaz(G,S′).

(ii) One has Kaz(G,S, ρ) = Kaz(G,S−1, ρ) = Kaz(G,S ∪ S−1, ρ) and
Kaz(G,S) = Kaz(G,S−1) = Kaz(G,S ∪ S−1).

(iii) One has Kaz(G,S, ρ) = Kaz(G,S∪{1}, ρ) and Kaz(G,S) = Kaz(G,S∪
{1}).

(iv) One has Kaz(G,Sm, ρ) ≤ mKaz(G,S, ρ) and Kaz(G,Sm) ≤ mKaz(G,S)
for all m ≥ 1.

(v) If S generates G as a group (thus every element of G is a finite
word in S), show that G has Kazhdan property (T) if and only if
Kaz(G,S) > 0.

From the above exercise, we see that the precise choice of compact set S
needed to establish the Kazhdan property is not important, so long as that
it generates the group (and by hypothesis, every locally compact group G
has at least one compact generating set S.)

Remark 2.1.10. In our conventions, we are only considering locally com-
pact groups that are compactly generated. However, in some applications
it is important to note that the compact generation hypothesis is in fact
automatic if one has Kazhdan’s property (T). Indeed, if Kaz(G,S) > 0 for
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some compact S (which we may assume without loss of generality to be a
neighbourhood of the identity), and G′ is the (necessarily open) subgroup
of G generated by S, then the Dirac delta δ1 in the Hilbert space `2(G/G′)
is G′-invariant and thus (by the hypothesis Kaz(G,S) > 0) `2(G/G′) has a
G-invariant vector, which forces G/G′ to be finite, and so G is compactly
generated.

Exercise 2.1.3. Let G be a locally compact group, let S be a compact
subset of G. Show that the following assertions are equivalent:

(i) Kaz(G,S) = 0.

(ii) There exists a unitary representation ρ : G → U(H) with no non-
trivial invariant vectors such that Kaz(G,S, ρ) = 0.

(Hint: If Kaz(G,S) = 0, take a sequence of unitary representations of
G with no non-trivial invariant vectors but a sequence of increasingly S-
approximately-invariant vectors, and form their (infinite) direct sum.)

Exercise 2.1.4. Let G be a locally compact group, let S be a compact
subset of G, and let ε > 0. Show that the following assertions are equivalent:

(i) Kaz(G,S) ≥ ε.
(ii) For any unitary representation ρ : G→ U(H) (possibly containing

invariant vectors), and any v ∈ H, one has

dist(v,HG) ≤ 1

ε
sup
s∈S
‖ρ(s)v − v‖H .

Exercise 2.1.5. Let G be a locally compact group. Show that exactly one
of the following is true:

(i) G has property (T).

(ii) There exists a sequence ρn : G → U(Hn) of representations and a
sequence of unit vectors vn ∈ Hn such that ‖svn − vn‖Hn → 0 for
all s ∈ G, but such that each of the Hn contains no non-trivial
invariant vectors.

Remark 2.1.11. Informally, the statement in (ii) of the preceding exercise
shows that one can reach the trivial representation as a “limit” of a sequence
of representations with no non-trivial invariant vectors. As such, property
(T) can be viewed as the assertion that the trivial representation T is isolated
from the other representations in some sense, which is the origin for the
term “property (T)”. This intuition can be formalised by introducing Fell’s
topology on unitary representations; see [BedeVa2008] for details.

Now we show why Kazhdan constants are related to expansion in Cayley
graphs.
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Exercise 2.1.6. Let Cay(G,S) be a finite k-regular Cayley graph, and let
ε > 0. Let ρ = τ �`2(G)0 be the restriction of the regular representation of
G to the functions of mean zero.

(i) If Kaz(G,S, ρ) ≥ ε, show that Cay(G,S) is a one-sided c-expander
for some c = c(ε, k) > 0.

(ii) Conversely, if Cay(G,S) is a one-sided ε-expander, show that Kaz(G,S, ρ) ≥
c for some c = c(ε, k) > 0.

(iii) Show that Kaz(G,S) ≤ Kaz(G,S, ρ) ≤ Ck Kaz(G,S) for some Ck >
0 depending only on k.

(Hint: Use the triangle inequality and the cosine rule: if v, w are unit vectors
with ‖v − w‖2H = 2− 2〈v, w〉H . Part (iii) can be strengthened to the exact
identity Kaz(G,S) = Kaz(G,S, ρ), but this requires more effort to prove;
see [Ne2006].)

Thus, to show that a sequence Cay(Gn, Sn) of k-regular Cayley graphs
forms a one-sided expander family, it suffices to obtain a lower bound on
the Kazhdan constants Kaz(Gn, Sn, ρn). There is a similar criterion for two-
sided expansion:

Exercise 2.1.7. Let Cay(G,S) be a finite k-regular Cayley graph, and let
ε > 0. Let ρ = τ �`2(G)0 be the restriction of the regular representation of
G to the functions of mean zero.

(i) If Kaz(G,S2, ρ) ≥ ε, show that Cay(G,S) is a two-sided c-expander
for some c = c(ε, k) > 0.

(ii) Conversely, if Cay(G,S) is a two-sided ε-expander, show that Kaz(G,S2, ρ) ≥
c for some c = c(ε, k) > 0.

One advantage of working with Kazhdan constants instead of expansion
constants is that they behave well with respect to homomorphisms:

Exercise 2.1.8. Let G,G′ be locally compact groups, and suppose that
there is a continuous surjective homomorphism π : G → G′ from G to G′.
Let S be a compact subset ofG. Show that for any unitary representation ρ′ :
G′ → U(H) of G′, one has Kaz(G′, π(S), ρ′) = Kaz(G,S, ρ′ ◦ π). Conclude
that Kaz(G′, π(S)) ≥ Kaz(G,S). In particular, if G has property (T), then
G′ does also.

As a corollary of the above results, we can use Kazhdan’s property (T)
to generate expander families:

Exercise 2.1.9. Let G be a finitely generated discrete group, and let S be
a symmetric subset of G that generates G. Let Nn be a sequence of finite
index normal subgroups of G, and let πn : G→ G/Nn be the quotient maps.
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Suppose that for all sufficiently large n, πn is injective on S ∪ {1}. Show
that if G has property (T), then Cay(G/Nn, πn(S)) for sufficiently large n
is an expander family.

It is thus of interest to find ways to demonstrate property (T), or in
other words to create invariant vectors from almost invariant vectors. The
next few exercises will develop some tools for this purpose.

Exercise 2.1.10. Let ρ : G→ U(H) be a unitary representation of a locally
compact group G. Suppose that there is a closed convex set K in H that
contains an orbit {gv0 : g ∈ G} of some element v0 in K. Show that K
contains an invariant vector. (Hint: Show that the set K ′ := {v ∈ H : gv ∈
K for all g ∈ G} is closed, convex, and G-invariant; now study an element
of K ′ of minimal norm.)

Exercise 2.1.11. Show that every compact group has property (T). (Hint:
use Exercise 2.1.10.)

Exercise 2.1.12 (Direct products and property (T)). Let G,G′ be locally
compact groups. Show that the product group G × G′ (with the product
topology, of course) has property (T) if and only if G and G′ both separately
have property (T). (Hint: one direction follows from Exercise 2.1.8. To
obtain the other direction, start with an approximately invariant vector v
for G × G′ and use Exercise 2.1.4 (and Exercise 2.1.2(v)) to show that the
G×G′-orbit of v stays close to v, then use Exercise 2.1.10.)

Exercise 2.1.13 (Short exact sequences and property (T)). Let G be a
locally compact group, and let N be a closed normal subgroup of G; then N
and G/N are also locally compact. Show that if N and G/N have property
(T), then G also has property (T).

Exercise 2.1.14. Let G be an infinite discrete finitely generated group,
generated by a finite set S. Show that the following assertions are equivalent:

(i) There exists a sequence Fn of finite non-empty subsets in G with
the property that |sFn∆Fn|/|Fn| → 0 as n → ∞ for each s ∈ S.
(Such a sequence of sets is known as a Folner sequence for G.)

(ii) One has Kaz(G,S, τ) = 0, where τ is the regular representation of
G.

(Hint: you may wish to mimic the proof of the weak discrete Cheeger in-
equality.)

Infinite, finitely generated groups G with property (i) or (ii) of the above
exercise are known as amenable groups; amenability is an important prop-
erty in ergodic theory, operator algebras, and many other areas of mathe-
matics, but will not be discussed extensively in this course. The notion of
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amenability can also be extended to other locally compact groups, but we
again will not discuss these matters here. From the above exercise, we see
that an infinite amenable finitely generated group cannot have property (T).
The next example shows, though, that it is also possible for non-amenable
groups (such as the free group on two or more generators) to not have prop-
erty (T).

Exercise 2.1.15.

(i) Show that the integers Z do not have property (T).

(ii) Show that any infinite discrete abelian finitely generated group does
not have property (T).

(iii) Show that any finitely generated group G with infinite abelianisa-
tion G/[G,G] does not have property (T).

(iv) Show that for any k ≥ 1, the free group on k generators does not
have property (T).

Exercise 2.1.16 (Property (T) and group cohomology). The purpose of
this exercise is to link property (T) to some objects of interest in group
cohomology, and in particular to demonstrate some “rigidity” properties of
groups with property (T). (This exercise will not be needed in the rest of the
text.) The results here originate from the work of Delorme [De1977] and
Guichardet [Gu1980]; see [BedeVa2008] or [Sh2000] for a further discus-
sion of the rigidity (and superrigidity) properties of groups with property
(T).

Let ρ : G→ U(H) be a unitary representation of a locally compact group
G. Define a ρ-cocycle to be a continuous function c : G → H obeying5 the
cocycle equation

c(gh) = c(g) + ρ(g)c(h)

for all g, h ∈ G. Define a ρ-coboundary to be a function c : G → H of the
form

c(g) = v0 − ρ(g)v0

for some fixed vector v0 ∈ H (or equivalently, an affine isometric action of
G on H with a common fixed point v0); observe that every ρ-coboundary is
automatically a ρ-cocycle.

(i) Show that a ρ-cocycle c : G → H is a ρ-coboundary if and only
if it is bounded. (Hint: if c is a bounded ρ-cocycle, then for any
vector v the orbit {ρ(g)v+ c(g) : g ∈ G} of v lies in a ball. Exploit
convexity to construct a shrinking sequence of such balls and use
the completeness of H pass to the limit.)

5Equivalently, a ρ-cocycle determines an affine isometric action v 7→ ρ(g)v + c(g) of G on H
with ρ as the unitary component of the action.
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(ii) Show that if G has property (T), then every ρ-cocycle is a ρ-
coboundary. (Hint: the main difficulty is to lift the affine iso-
metric action to a unitary action. One way to do this is to work
in the Hilbert space H̃ that is the completion of the finitely sup-
ported measures on H, using an inner product such as 〈δv, δw〉H̃ :=

e−ε‖v−w‖
2

for some sufficiently small ε > 0 (one needs to verify
that this does indeed determine a positive definite inner product,
which can be seen for instance by working in finite dimensions and
using either Fourier transforms or gaussian identities). Note that

the separability of H will imply the separability of H̃.)

(iii) Conversely, show that if for every unitary representation ρ, every
ρ-cocycle is a ρ-coboundary, then G has property (T). (Hint: First
show (by taking a direct sum of counterexamples, as in Exercise
2.1.3) that if S is a compact neighbourhood of the identity that
generates G, ρ : G → U(H) is any unitary representation, and c
is a ρ-cocycle, then supg∈G ‖c(g)‖H ≤ C sups∈S ‖c(s)‖H , where C
depends on S but is independent of ρ or c. Apply this fact to a
coboundary generated by an approximate vector.)

Exercise 2.1.17 (Groups with expanding Cayley graphs have few low-di-
mensional representations). Let Cay(G,S) be a finite k-regular Cayley graph
which is a two-sided ε-expander for some ε > 0. LetH be a finite-dimensional
Hilbert space.

(i) [Wa1991] If ρ : G → U(H) and ρ̃ : G → U(H) are two non-
isomorphic irreducible representations of G, show that

‖1

k

∑
s∈S

ρ(s)Aρ̃(s)∗‖HS(H) ≤ (1− δ)‖A‖HS(H)

for some δ > 0 depending only on ε, and all linear transforma-
tions A : H → H where ‖A‖HS(H) := tr(AA∗)1/2 is the Hilbert-
Schmidt norm of A. (Hint: Use an appropriate unitary action of
G on HS(H), use Schur’s lemma to exclude invariant vectors, and
the Peter-Weyl theorem to relate this representation to the regular
representation.)

(ii) [deRoVa1993] If ρi : G → U(H) are pairwise non-isomorphic ir-
reducible representations of G for i = 1, . . . ,m, show that m ≤
exp(Ck dim(H)2), where C depends only on ε. (Hint: use (i) to
show that the vectors (ρi(s))s∈S for i = 1, . . . ,m are separated from
each other in the Hilbert space HS(H)k, then use a volume packing
argument.)

For further results of this type (limiting the representations of groups with
expanding Cayley graphs), see [MeWi2004].
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2.2. Induced representations and property (T)

Let G̃ be a locally compact group, and let G be a subgroup of G̃ which is
closed (and thus also locally compact). Clearly, every unitary representa-

tion ρ̃ : G̃ → U(H) of G̃ can be restricted to form a unitary representation
ResG

G̃
ρ : G → U(H) of G. It is then natural to ask whether the converse is

also true, that is to say whether any unitary representation ρ : G → U(H)

of H can be extended to a representation ρ̃ : G̃ → U(H) of G̃ on the same
Hilbert space H.

In general, the answer is no. For instance, if G̃ is the Heisenberg

group G̃ =

1 Z Z
0 1 Z
0 0 1

, and G = [G̃, G̃] is the commutator group G =1 0 Z
0 1 0
0 0 1

, then any one-dimensional representation ρ̃ : G̃ → U1(C) must

annihilate the commutatorG, but there are clearly non-trivial one-dimensional
representations ρ : G→ U1(C) of G which thus cannot be extended to a rep-
resentation of G.

However, there is a fundamental construction that (under some mild
hypotheses) takes a representation ρ : G → U(H) of G and converts it to

an induced representation ρ̃ := IndG̃G ρ : G̃ → U(H̃) of G̃, that acts on a

somewhat larger Hilbert space H̃ than H (in particular, the induced rep-
resentation construction is not an inverse of the restricted representation
construction). This construction will provide an important link between the

representation theories of G and G̃, and in particular will connect property
(T) for G to property (T) for G̃.

To motivate the induced representation construction, we work for sim-
plicity in the case when G and G̃ are discrete, consider the regular repre-
sentations τ : G→ U(H) and τ̃ : G̃→ U(H̃) of G and G̃ respectively, where

H := `2(G) and H̃ := `2(G̃). We wish to view the G̃-representation τ̃ as
somehow being induced from the G-representation τ :

τ̃ = IndG̃G τ.

To do this, we must somehow connect H with H̃, and τ with τ̃ .

One natural way to proceed is to express G̃ as the union of cosets kG
of G for k in some set K of coset representatives. We can then split `2(G̃)

as a direct sum `2(G̃) = ⊕k∈K`2(kG) (at least in the model case when K
is finite), and each factor space `2(kG) can be viewed as a shift `2(kG) =
ρ̃(k)`2(G) of `2(G). This does indeed give enough of a relationship between τ
and τ̃ to generalise to other representations, but it is a somewhat inelegant
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“coordinate-dependent” formalism because it initially depends on making
a somewhat arbitrary choice of coset representatives K (though one can
show, at the end of the construction, that the choice of K was ultimately
irrelevant). Also, this method develops some technical complications when

the quotient space G̃/G is not discrete.

Because of this, we shall work instead with a more “coordinate-free”
construction that does not require an explicit construction of coset repre-
sentatives. Instead, we rely on the orthogonal projection π : H̃ → H of
the larger Hilbert space H̃ = `2(G̃) to the smaller Hilbert space `2(G),
which in the case of the regular representation is just the restriction map,
π(f) := f �G.

Observe that given any vector f ∈ H̃ and group element g ∈ G̃, one
can form the projection F (g) := π(ρ̃(g−1)f) in H, which can be written
explicitly as

F (g)(x) = f(gx)

for g ∈ G and x ∈ G̃. Thus F is a function from G̃ to H which obeys the
symmetry

(2.4) F (gh) = ρ(h−1)F (g)

for all g ∈ G̃ and h ∈ G. Conversely, any function F : G̃ → H obeying the
symmetry (2.4) arises from an element f of H̃ in this manner. Thus, we may

identify H̃ (as a vector space, at least), with the space of functions F : G̃→
H obeying (2.4). Furthermore, the Hilbert space norm ‖f‖H̃ = ‖f‖`2(G̃) of

G̃ can be expressed in terms of F via the identity

‖f‖H̃ = (
∑

g∈G̃/G

‖F (g)‖2H)1/2,

where we use the fact (from (2.4)) that ‖F (gh)‖H = ‖F (g)‖H for all h ∈ G to

view (by abuse of notation) ‖F (·)‖H as a function of G̃/G rather than of G̃.

Similarly, given two vectors f, f ′ ∈ H̃ with associated functions F, F ′ : G̃→
H, the inner product 〈f, f ′〉H̃ can be recovered from F, F ′ by the formula

〈f, f ′〉H̃ =
∑

g∈G̃/G

〈F (g), F ′(g)〉H ,

where we adopt the same abuse of notation as before.

Motivated by this example, we now have the following construction (es-
sentially due to Frobenius).

Definition 2.2.1 (Induced representation). Let G̃ be a locally compact

group, and let G be a subgroup of G̃ which is closed (and thus also locally
compact). Suppose that there is a non-zero Radon measure µG̃/G on the

quotient space G̃/G which is invariant under the left-action of G̃ (i.e. it is
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a Haar measure of G̃/G). Let ρ : G→ U(H) be a unitary representation of

G. Then we define the induced representation ρ̃ = IndG̃G ρ : G̃ → U(H̃) as

follows. We define H̃ to be the (pre-)Hilbert space of all functions F : G̃→ H

obeying (2.4) for all g ∈ G̃ and h ∈ G, that are weakly measurable in
the sense that λ(F ) is Borel measurable for all bounded linear functionals
λ : H → C, and such that the norm

‖F‖H̃ := (

∫
g∈G̃/G

‖F (g)‖2H dµG̃/G(g))1/2

is finite, where we abuse notation as before and view ‖F (·)‖H as a function

of G̃/G. (Note from the separability of H that the function ‖F (·)‖H is

measurable.) We also define the inner product on H̃ by

〈F, F ′〉H̃ :=

∫
g∈G̃/G

〈F (g), F ′(g)〉H dµG̃/G(g),

and identify together elements of H̃ whose difference has norm zero, to
obtain a genuine Hilbert space rather than a pre-Hilbert space. (We leave it
to the reader to verify that this space is in fact complete; this is a “G-space”
version of the standard argument establishing that L2(X,µ) is complete for

any measure space (X,µ).) We then define the representation ρ̃ on H̃ by
the formula

ρ̃(g)F (x) := F (g−1x)

for all g, x ∈ G̃; one can verify that this is a well-defined unitary represen-
tation.

Remark 2.2.2. Given a Haar measure µG̃/G on G̃/G and a Haar measure

µG on G, one can build a Haar measure µG̃ on G̃ via the Riesz representation
theorem and the integration formula∫

G̃
f(x) dµG̃(x) :=

∫
G̃/G

(∫
G
f(yz) dµG(z)

)
dµG̃/G(y)

for f ∈ Cc(G̃), where we abuse notation by noting that the integrand is a

G-right-invariant function of y ∈ G̃, and can thus be viewed as a function
on the quotient space G̃/G. As Haar measures on groups are determined
up to constants (as shown for instance in [Ta2013, §1.3]), we conclude that

Haar measures on quotient spaces G̃/G, if they exist, are also determined up
to constants. As such, the induced representation construction given above
does not depend (up to isomorphism) on the choice of Haar measure on G̃/G.
However, it is possible to have quotient spaces for which no Haar measure is
available; for instance the group of affine transformations x 7→ ax+b acts on
R (which is then a quotient of the affine group by the stabiliser of a point),
but without any invariant measure. It is possible to extend the induced
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representation construction to this setting also, but this is more technical;
see [Fo1995] for details.

Example 2.2.3. If G is an open subgroup of G̃, and µG̃/G is counting

measure, then the induced representation of the trivial one-dimensional rep-
resentation of G is the quasiregular representation of G̃ on G̃/G, and the
induced representation of the regular representation of G is the regular rep-
resentation of G̃.

Exercise 2.2.1 (Transitivity of induction). Let G3 ≤ G2 ≤ G1 be locally
compact groups, such that G3 has finite index in G2, and G2 has finite index
in G1. Show that for any unitary representation ρ : G3 → U(H) of G3, one

has IndG1
G2

IndG2
G3
ρ ≡ IndG3

G1
ρ. (A similar statement is also true in the infinite

index case, but is more technical to establish.)

As a first application of the induced representation construction (and
the much simpler restricted representation construction), we show that one
can pass from a group to a finite index subgroup as far as property (T) is
concerned.

Proposition 2.2.4. Let G̃ be a locally compact group, and let G be a finite
index closed subgroup of G̃. Then G̃ has property (T) if and only if G has
property (T).

Proof. Suppose first that G has property (T). Let S be a compact gener-

ating subset of G. As G has finite index in G̃, we may find a finite set K in
G̃ such that KG = G̃. Let ρ : G̃ → U(H) be a unitary representation, and
suppose that H has a unit vector v such that ‖sv−v‖H ≤ ε for all s ∈ S∪K,
where ε > 0 is a small quantity (independent of ρ) to be determined later.

We will show that v lies within distance O(ε) from a G̃-invariant vector

(where the implied constant can depend on S,G, G̃ but not on ε), which will
give the claim for ε small enough.

By Exercise 2.1.2(v) applied to G, we have Kaz(G,S) > 0. By Exercise
2.1.4, we thus see that v lies within O(ε) from a G-invariant vector, so by the
triangle inequality we may assume without loss of generality (and adjusting

ε slightly) that v is G-invariant. If g ∈ G̃ is arbitrary, we may write g = kγ
for some k ∈ K and γ ∈ G. Then ‖gv − v‖H = ‖kv − v‖H = O(ε). Thus

the G̃-orbit of v lies in a ball of radius O(ε) centred at v, and so by Exercise
2.1.10 this ball contains an invariant vector as required.

Conversely, suppose that G̃ has property (T). Let S be a compact gen-
erating subset of G, which we may assume without loss of generality to be
a neighbourhood of the identity. Let ρ : G → U(H) be a unitary represen-
tation, and let v0 be a unit vector such that

(2.5) ‖sv0 − v0‖H ≤ ε
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for all s ∈ S, where ε > 0 is a small quantity independent of ρ to be
chosen later. Our task is to show that v0 lies within O(ε) of a G-invariant

vector. Now we form the induced representation ρ̃ := IndG̃G ρ : G̃ → U(H̃)

(using counting measure for µG̃/G). By construction, H̃ is the space of all

functions ṽ : G̃→ H such that ṽ(xγ) := ρ(γ)−1ṽ(x) for all γ ∈ G and x ∈ G̃.
If we let K be a finite set consisting of one representative of each left-coset
of G, it is easy to see that each element ṽ : G̃ → H of H̃ is determined by
its restriction to K, and conversely every function from ṽ : K → H can be
extended uniquely to an element of H̃; thus H̃ can be identified with the
direct sum ⊕k∈KH of |K| copies of H. Also, H̃ contains H as a G-invariant
subspace, by identifying each vector v ∈ H with the function ṽ defined by
setting ṽ(γ) = ρ(γ)−1v for γ ∈ G and ṽ(x) = 0 for x 6∈ G. The actions of
ρ̃ and ρ are then compatible in the sense that ρ̃(γ)v = ρ(γ)v for all γ ∈ G
and v ∈ H.

Now consider the vector

ṽ :=
∑
k∈K

ρ̃(k)v0.

We now study its invariance properties of this vector with respect to S̃ :=
S ∪K (which generates G̃). For any s ∈ S̃ and k ∈ K, sk lies in a compact

subset of G̃, and thus sk = k′s′ for some k′ = k′(k, s) in K and s′ = s′(k, s)

for some s′ in a compact subset of G. Also, for fixed s ∈ S̃, the map
k 7→ k′(k, s) is a permutation of K. Since S is a compact neighbourhood of
the identity generating G, we see from compactness that there is a finite m
such that s′(k, s) ∈ Sm for all k, s. In particular, from (2.5) and the triangle
inequality we have

‖ρ(s′)v0 − v0‖H ≤ mε.
Since

ρ̃(s)ṽ − ṽ =
∑
k∈K

ρ̃(k′(k, s))
(
ρ(s′(k, s))v0 − v0

)
we conclude from the triangle inequality that

‖ρ̃(s)ṽ − ṽ‖H = O(ε)

where the implied constant can depend on m,S,K,G, G̃ but not on ρ or
ε. As G̃ has property (T), we conclude (for ε small enough) using Exercise

2.1.4 that ṽ lies within O(ε) of an G̃-invariant vector w. In particular, as

G̃-invariant vectors are also G-invariant, w(1) is a G-invariant vector in H
which is within O(ε) of ṽ(1) = v0, as desired. �

Actually, with a bit more effort, one can generalise the above proposition
from the finite index case to the finite covolume case, as was first observed
by Kazhdan [Ka1967]. There is however a technical issue; once G̃/G is
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not discrete, the original Hilbert space H does not embed naturally into the
induced Hilbert space H̃ (basically because G now has measure zero in G̃, so

there is no obvious way to embed L2(G) into L2(G̃)). This issue however can
be dealt with by “convolving” with a suitable approximation to the identity
f ∈ Cc(G̃), where Cc(G̃) is the space of continuous functions f : G̃ → C
with compact support. More precisely, we have the following definition:

Definition 2.2.5. Let G̃ be a locally compact group, and let G be a sub-
group of G̃ that is also a locally compact group. Let µG̃/G be a Haar measure

on G̃/G, and let µG be a Haar measure on G. Let ρ : G→ U(H) be a uni-

tary representation, and let ρ̃ : G̃ → U(H̃) be the induced representation

ρ̃ = IndG̃G ρ. Let v ∈ H, and let f ∈ Cc(G̃). Then we define the convolution

Cf (v) ∈ H̃ of v by f to be the function Cf (v) : G̃→ H given by the formula

Cf (v)(g) :=

∫
G
f(gh)ρ(h)vdµG(h).

One easily verifies that Cf (v) is well-defined and lies in H̃.

Related to the convolution operation will be the projection ΠG̃/G(f) ∈
Cc(G̃/G) of a function f ∈ Cc(G̃), defined by the formula

ΠG̃/G(f)(g) =

∫
G
f(gh) dµG(h),

where the right-hand side is right G-invariant in g, and can thus be viewed
as a function of G̃/G rather than G̃. We have the following key technical
fact:

Lemma 2.2.6 (Surjectivity). The projection operator ΠG̃/G : Cc(G̃) →
Cc(G̃/G) is surjective. Furthermore, given a non-negative function F in

Cc(G̃/G), we may find a non-negative function f ′ in Cc(G̃) with ΠG̃/G(f ′) =

F .

Proof. It suffices to prove the second claim. Let F : G̃/G→ R+ be a non-

negative continuous function supported on some compact subset K of G̃/G.

By compactness, one can find a compact subset K̃ of G̃ which covers K in
the sense that for every coset gG in the preimage of K, the set K̃ ∩ gG is
non-empty and open in gG (or equivalently, g−1K̃ ∩ G is open in G). By

Urysohn’s lemma, we may find a non-negative function f ∈ Cc(G̃) which

equals 1 on K̃, and then ΠG̃/G(f) is nonzero on K. Thus we may write

F = ΠG̃/G(f)F ′ for some F ′ ∈ Cc(G̃/G). If we let π : G̃ → G̃/G be the

projection map, then we easily verify that the function f ′ := f(F ′ ◦ π) lies

in Cc(G̃) and is non-negative with F = ΠG̃/G(f ′), and the claim follows. �

Now we generalise Proposition 2.2.4 to the finite covolume case:
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Proposition 2.2.7. Let G̃ be a locally compact group, and let G be a locally
compact subgroup of G̃. Suppose that G has finite covolume in G̃, which
means that there exists a finite Haar measure µG̃/G on G̃/G. Then G̃ has

property (T) if and only if G has property (T).

Proof. We may normalise the Radon measure µ to be a probability mea-
sure. Suppose first that G has property (T). Let S be a compact generating

subset of G, and let ε be chosen later. As µ(G̃/G) = 1 and G̃ is compactly

generated, we may use inner regularity and find a compact subset K of G̃
such that µ(π(K)) ≥ 1− ε, where π : G̃→ G̃/G is the projection map.

Now let ρ : G̃→ U(H) be a unitary representation, and suppose that H
has a unit vector v such that ‖sv−v‖H ≤ ε for all s ∈ S∪K. As before, the

goal is to show that v lies within distance O(ε) from a G̃-invariant vector,
which will give the claim for ε small enough.

By Exercise 2.1.2(v) and Exercise 2.1.4 as in the previous argument, we
may assume that v is G-invariant. The function g 7→ ρ(g)v then descends

from a bounded H-valued function on G̃ to a function on F : G̃/G → H.
We may thus form the average

v̄ :=

∫
G̃/G

F (x) dµG̃/G(x),

where we can define the H-valued integral in the weak sense, using bounded
linear functionals λ : H → C on H and the Riesz representation theorem
for Hilbert spaces, noting that F is weakly integrable in the sense that λ(F )
is absolutely integrable for all bounded linear functionals λ. By the left-
invariance of µG̃/G we see that v̄ is G̃-invariant. Also, by construction, we

have ‖F (x)‖H = O(1) for all x ∈ G̃/G, and ‖F (x) − x‖H = O(ε) for all
x ∈ π(K), which has measure 1− ε. As such we see that ‖v̄ − v‖H = O(ε),
and the claim follows.

Now suppose instead that G̃ has property (T). Let S be a compact
generating subset of G, which we may assume without loss of generality
to be a neighbourhood of the identity. Let ρ : G → U(H) be a unitary
representation, and let v0 be a unit vector obeying (2.5) for all s ∈ S, and

some small ε > 0 (depending only on S,G, G̃ and to be chosen later). We
will suppose for contradiction that H contains no non-trivial G-invariant
vectors.

As before, the first step is to build the induced representation ρ̃ :=

IndG̃G ρ : G̃→ U(H̃) of ρ, using the given Haar measure µG̃/G. Let δ > 0 be

a sufficiently small quantity (depending on S,G, G̃, but not depending on ε)
to be chosen later. By inner regularity, we can find a compact subset K of
G̃/G of measure µG̃/G(K) ≥ 1−δ. By Urysohn’s lemma followed by Lemma
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2.2.6, we may find a function f ∈ Cc(G̃) such that ΠG̃/G(f) is bounded by

1 and equals 1 on K; in particular, it differs by 1 only on a set of measure
O(δ). Now we consider the vector v ∈ H̃ defined by the formula

v := Cf (v0),

thus

v(g) =

∫
G
f(gh)ρ(h)v0dµG(h).

By the triangle inequality one has

(2.6) ‖v(g)‖H ≤
∫
G
f(gh)dµG(h) = ΠG̃/G(f)(f) ≤ 1

for all g ∈ G̃.

Let K ′ be a compact subset of G̃ with π(K ′) containing K. For g ∈ K ′
and h ∈ G with gh in the support of f , we see from the approximate
invariance of v0 that

‖ρ(h)v0 − v0‖H �δ ε

and thus

‖v(g)−ΠG̃/Gf(g)v0‖H �δ ε.

In particular, we see that ‖v(g)‖H is equal to 1−Oδ(ε) for all g ∈ K (again

abusing notation and descending from G̃ to G̃/G). From this and (2.6) we
see that

1� ‖v‖H ≤ 1

if δ is small enough (and ε sufficiently small depending on δ).

Now we investigate the approximate invariance properties of v. Let S̃
be a compact generating subset of G̃ (not depending on δ or ε). For g ∈ K ′
and s ∈ S̃, the preceding argument gives

‖v(g)−ΠG̃/Gf(g)v0‖H �δ ε

and

‖v(s−1g)−ΠG̃/Gf(s−1g)v0‖H �δ ε

and thus (by choice of ΠG̃/Gf)

‖v(g)− v(s−1g)‖H �δ ε

whenever g ∈ K ∩ sK (again abusing notation). This is a measure 1−O(δ)

subset of G̃/G. From this and (2.6) we see that

‖v − ρ̃(s)v‖H̃ ≤ Oδ(ε) +O(δ1/2).

Since G̃ has property (T), we conclude (if δ is small enough, and ε sufficiently

small depending on δ) that there exists a non-zero G̃-invariant vector w ∈ H̃.

Thus, for all g ∈ G̃, one has w(gx) = w(x) for almost all x ∈ G̃ (using Haar

measure on G̃, of course). By the Fubini-Tonelli theorem, this implies that
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for almost all x, one has w(gx) = w(x) for almost all g ∈ G̃. Fixing such a
x, we conclude in particular that w is almost everywhere equal to a constant
w0 ∈ H. By another application of Fubini-Tonelli, this implies the existence
of a coset xG on which w is almost everywhere equal to w0 (this time using
the Haar measure coming from G). By (2.4), this makes w0 G-invariant,
and thus zero by choice of H. But this makes w zero almost everywhere,
contradicting the non-zero nature of w. �

A discrete subgroup Γ of a locally compact group G with finite covolume
is known as a lattice. Thus, for instance, Zd is a lattice in Rd. Here is another
important example of a lattice, involving the special linear groups SLd:

Proposition 2.2.8. For any d ≥ 1, SLd(Z) (the group of d × d integer
matrices of determinant one) is a lattice in SLd(R) (the group of d× d real
matrices of determinant one).

Proof. Clearly SLd(Z) is discrete, so it suffices to show that there is a
finite Haar measure on SLd(R)/ SLd(Z). It will suffice to show that there
is a subset E of SLd(R) of finite measure (with respect to a Haar measure
on SLd(R), of course) whose projection onto SLd(R)/ SLd(Z) is surjective.
Indeed, if this is the case, then one can construct a fundamental domain K
in E by selecting, for each left coset g SLd(Z) of SLd(Z), a single element
of g SLd(Z) ∩E in some measurable fashion (noting that this set is discrete
and so has finite intersection with every compact set, allowing one to locate
minimal elements with respect to some measurable ordering on SLd(R)).
As the translates of K by the countable group SLd(Z) cover SLd(R), K
must have positive measure; and one can then construct a Haar measure on
SLd(R)/ SLd(Z) by pushing forward the Haar measure on K.

One can interpret SLd(R) as the space of all lattices in Rd generated
by d marked generators v1, . . . , vd ∈ Rd which are unimodular in the sense
that det(v1, . . . , vd) = 1. The quotient space SLd(R)/ SLd(Z) can then be
viewed as the space of all unimodular lattices without marked generators
(since the action of SLd(Z) simply serves to move one set of generators to
another). Our task is thus to find a finite measure set of unimodular lattices
with marked generators, which cover all unimodular lattices.

It will be slightly more convenient to work with GLd(R) instead of
SLd(R) - i.e. the space of all lattices (not necessarily unimodular) with
marked generators v1, . . . , vd. The reason for this is that there is a very sim-
ple Haar measure on GLd(R), namely the Lebesgue measure dv1 . . . dvd on
the generators (or equivalently, the measure induced from the open embed-

ding GLd(R) ⊂ Rd2); this is easily verified to be a Haar measure. One can
then use dilation to convert a Haar measure on GLd(R) to one on SLd(R),
for instance by declaring the SLd(R) Haar measure of a set E ⊂ SLd(R) to
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be the GLd(R) Haar measure of the set {tA : t ∈ [1, 2];A ∈ E}. Our task
is now to find a finite measure set of lattices with marked generators, which
cover all lattices of covolume in the interval [1, 2d]. Clearly one can replace
[1, 2d] here by any other compact interval in the positive real line.

This claim is trivial for d = 1, so suppose inductively that d > 1, and
that the claim has already been proven for d−1. From Minkowski’s theorem
(see e.g. [TaVu2006, Theorem 3.28]), every lattice Γ of covolume in [1, 2d]
contains a non-zero vector vd of normO(1), where we allow implied constants
to depend on d. We may assume this vector to be irreducible, so that Γ is
generated by vd and d−1 other generators v1, . . . , vd−1 that are independent
of vd. By subtracting or adding an integer multiple of vd to these other
generators, we may assume that they take the form vi = wi + tind for some
wi orthogonal to vd and some ti ∈ [0, |vd|] for each i = 1, . . . , d − 1, where
nd := vd/|vd| is the direction vector of vd. Furthermore, w1, . . . , wd−1 span a
lattice in the d− 1-dimensional space n⊥d of covolume comparable to 1/|vd|.

For each fixed vd, the parameters t1, . . . , td−1 range over a cube of
d − 1-dimensional Lebesgue measure |vd|d−1. By induction hypothesis and
a rescaling argument, the w1, . . . , wd−1 can be made (after identifying n⊥d
arbitrarily with Rd−1) to range over a set of GLd−1(R) of Haar measure
O(1/|vd|). By the Fubini-Tonelli theorem (and the rotation-invariance of
Lebesgue measure), we may thus cover all the lattices of covolume in [1, 2d]
in Rd by a subset of GLd(R) of measure at most∫

vd∈Rd:|vd|=O(1)
|vd|d−1O(1/|vd|) dvd

which evaluates to O(1), and the claim follows. �

Combining this fact with Proposition 2.2.7, we obtain

Corollary 2.2.9. For any d ≥ 1, SLd(R) has property (T) if and only if
SLd(Z) has property (T).

The usefulness of this corollary lies in the fact that there is a certain
asymptotic conjugation argument of Mautner and Moore which is available
for connected Lie groups such as SLd(R), but not for discrete groups such
as SLd(Z), and allows one to boost the invariance properties of a vector; see
Proposition 2.3.9 below.

We will now study the property (T) nature of the special linear group.

Remark 2.2.10. Another consequence of Proposition 2.2.7 (and Remark

2.1.10) is that if a locally compact group G̃ has property (T), then all lattices
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G in G̃ are finitely generated; this was one of Kazhdan’s original applica-
tions6 of property (T) in [Ka1967]. It is surprisingly difficult to replicate
this result for, say, SL3(R), without using property (T) (or something very
close to it).

2.3. The special linear group and property (T)

The purpose of this section is to prove the following theorem of Kazhdan
[Ka1967]:

Theorem 2.3.1. SLd(R) has property (T) if and only if d 6= 2.

Combining this theorem with Corollary 2.2.9 and Exercise 2.1.9, we
obtain some explicit families of expanders:

Corollary 2.3.2 (Margulis’ expander construction). If d ≥ 3 and S is a
symmetric set of generators of SLd(Z) that does not contain the identity,
then the Cayley graphs Cay(SLd(Z/nZ), πn(S)) form an expander family,
where πn : SLd(Z)→ SLd(Z/nZ) is the obvious projection homomorphism.

We now prove this theorem. We first deal with the d = 1, 2 cases. The
group SL1(R) is trivial and thus has property (T). As for SL2(R), we may
rule out property (T) by using the following basic fact:

Lemma 2.3.3. SL2(R) contains a lattice isomorphic to the free group F2

on two generators.

Indeed, from this lemma, Proposition 2.2.7, and Exercise 2.1.15, we
conclude that SL2(R) does not have property (T).

A proof of the above lemma is given in the exercise below.

Exercise 2.3.1. Let Γ be the subgroup of SL2(Z) (and hence of SL2(R))

generated by the elements a :=

(
1 2
0 1

)
and b :=

(
1 0
2 1

)
.

(i) If A := {(x, y) ∈ R2 : |x| < |y|} and B := {(x, y) ∈ R2 : |x| > |y|},
show that anA ⊂ B and bnB ⊂ A for any non-zero integer n, where
SL2(R) acts on R2 in the obvious manner.

(ii) Show that Γ is a free group on two generators. (Hint: use (i) to
show that any reduced word7 of a, b that both begins and ends with

6Strictly speaking, one has to modify the proof of Proposition 2.2.7 to obtain this application,
because one is not allowed to assume that G is compactly generated any more; however, if one

inspects the proof, one sees that the set S in that proof does not need to generate all of G, but

merely needs to generate those h for which gh lies in the support of f for some g ∈ K′. As this
is already a compact set, we can remove the hypothesis that G is compactly generated.

7A word in a, b, a−1, b−1 is reduced if a and a−1 do not appear adjacent to each other, and
similarly for b, b−1.
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a±1, or begins and ends with b±1, is not equal to the identity. This
argument is a variant of the ping-pong lemma argument used in
[Ti1972].)

(iii) Show that Γ has finite index in SL2(Z). (Hint: Show that given an
element of SL2(Z) with columns v, w ∈ Z2, one can multiply this
element on the left by some word in a, b to minimise the magnitude
|v ·w| of the dot product, until one reaches a point where |v ·w| ≤
‖v‖2, ‖w‖2. Now use the Lagrange identity |v ·w|2 + 1 = ‖v‖2‖w‖2
to conclude that v, w have bounded size.)

(iv) Establish Lemma 2.3.3.

Now we turn to the higher-dimensional cases d ≥ 3. The idea is to first
use Fourier analysis8 to understand the action of various simpler subgroups
of SLd(R) acting on a space H with approximately invariant vectors, and
obtain non-trivial vectors that are invariant with respect to those simpler
subgroups. Then, we will use an asymptotic conjugation trick of Mautner
to boost this invariance up to increasingly larger groups, until we obtain a
non-trivial vector invariant under the whole group SLd(R).

We begin with a preliminary result, reminiscent of property (T) but in
the category of probability measures.

Lemma 2.3.4. Let S be a compact neighbourhood of the identity in SL2(R),
and let ε > 0. Suppose that µ is a probability measure on R2 with the
property that

‖s∗µ− µ‖TV ≤ ε
for all s ∈ S, where s acts on R2 in the obvious manner, s∗µ is the pushfor-
ward of µ by s (thus s∗µ(E) := µ(s−1(E)) for all measurable E), and ‖‖TV
denotes the total variation norm of a measure. Then µ({0}) = 1 − O(ε),
where the implied constant can depend on S.

Proof. We modify9 the argument used to establish Exercise 2.3.1. Let
A,B, a, b be as in that exercise. Then

‖a∗µ− µ‖TV = O(ε)

and thus

µ(B) ≥ µ(aA) = µ(A) +O(ε)

and similarly

µ(A) ≥ µ(bB) = µ(B) +O(ε).

8As such, this section will presuppose some familiarity with Fourier analysis, as reviewed for
instance in [Ta2010, §1.12].

9There are many other proofs available, but this one has the advantage of extending without
difficulty to the integer setting of SL2(Z).
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Putting these estimates together, we conclude that

µ(B) = µ(aA) +O(ε).

Similarly one has

µ(B) = µ(a2A) +O(ε).

Since

B\a2A ⊃ {(x, y) ∈ R2 : |y| < |x| ≤ 3|y|},

we conclude that the set {(x, y) ∈ R2 : |y| < |x| ≤ 3|y|} has measure O(ε).
Translating this set around by a finite number of explicit elements of SL2(R),
we conclude that µ(R2\{0}) = O(ε), and the claim follows. �

Now we use Fourier analysis to pass from probability measures back to
Hilbert spaces. We will need (a special case of) a fundamental result from
abstract harmonic analysis, namely Bochner’s theorem:

Proposition 2.3.5 (Bochner’s theorem for Rd). Let f : Rd → C be a
bounded continuous function which is positive semi-definite, in the sense
that f(x) = f(−x) for all x ∈ Rd, and

(2.7)

∫
Rd

∫
Rd

f(x− y) dν(x)dν(y) ≥ 0

for all finite complex measures ν. Then there exists a non-negative finite
measure µ on Rd such that f is the inverse Fourier transform of µ, in the
sense that

f(x) =

∫
Rd

e2πix·ξ dµ(ξ)

for all x ∈ Rd.

Proof. Suppose first that f was square-integrable. Then by Plancherel’s
theorem, there is a square-integrable Fourier transform f̂ for which one has

f(x) =

∫
Rd

e2πix·ξ f̂(ξ) dξ

in the sense of tempered distributions (or in an L2 approximation sense).
From (2.7) (applied to a smooth measure dν(x) = g(x) dx) and standard
Fourier identities, one then has∫

Rd

f̂(ξ)|ĝ(ξ)|2 dξ ≥ 0

for any Schwartz function ĝ. From this and the Lebesgue differentiation
theorem we see that f̂ is non-negative almost everywhere. By testing f
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against an approximation Rdφ(Rx) to the identity, we also see from the
continuity of f that

f(0) = lim
R→∞

∫
Rd

f̂(ξ)φ̂(ξ/R) dξ

which (after choosing φ to have non-negative Fourier transform) we see that

f̂ is absolutely integrable. Setting dµ(ξ) := f̂(ξ) dξ, one obtains the claim.

Now we consider the general case. We consider a truncation fR(x) :=
f(x)ψ(x/R) of f for some large R > 0, where ψ = η ∗ η and η is a real even
Schwartz function with unit L2 norm. From the identity∫
Rd

∫
Rd

fR(x−y) dν(x)dν(y) =

∫
Rd

|η̂(ξ)|2
∫
Rd

f(x−y) e2πiξ·xdν(x)e−2πiξ·ydν(y)

we see that fR is also positive semi-definite, and is thus the Fourier transform
of a finite non-negative measure µR, with µR(Rd) = fR(0) = f(0). Since the
fR converge in the sense of tempered distributions to f , µR must converge
in distribution to the distributional Fourier transform of f . In particular,
by the Riesz representation theorem, f̂ must be another finite non-negative
measure, and the claim follows. �

Remark 2.3.6. Bochner’s theorem can be extended to arbitrary locally
compact abelian groups, and this fact can be used to build10 the foundation
of Fourier analysis on such groups; see for instance [Ru1990] for details.
There are several substitutes for Fourier analysis that can serve this purpose,
such as spectral theory or the Gelfand theory of C∗ algebras, but we will
not discuss these topics here.

We can use Bochner’s theorem to analyse11 unitary representations ρ : Rd →
U(H) of Euclidean groups. Given a vector v in the Hilbert space H, we con-
sider the associated autocorrelation function fv,v : Rd → C defined by the
formula

fv,v(x) := 〈ρ(x)v, v〉H
This is a continuous bounded function of Rd, and from the identity∫

Rd

∫
Rd

fv,v(x− y) dν(x)dν(y) =

∥∥∥∥∫
R
ρ(x)v dν(x)

∥∥∥∥2

H

we see that it is positive semi-definite. Thus, by Bochner’s theorem, there
exists a non-negative finite measure µv,v whose inverse Fourier transform is

10Note though that in order to do this without circularity, one needs a different proof than the

one above, which presupposes Plancherel’s theorem, which in the case of general locally compact
abelian groups is usually proven using Bochner’s theorem.

11Actually, much the same analysis will apply to unitary representations of arbitrary locally
compact abelian groups, but we will only need to work with Rd (and more specifically, R2) here.
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fv,v, thus

(2.8) 〈ρ(x)v, v〉H =

∫
Rd

e2πix·ξ dµv,v(ξ).

In particular, µv,v has total mass ‖v‖2H . From a quantum mechanical view-
point, one can view µv,v as the probability distribution of the momentum of
v (now viewed as a quantum state, and normalising v to be a unit vector).

By depolarisation, we can then assign a complex finite measure µv,w to
any pair of vectors v, w ∈ H such that

〈ρ(x)v, w〉H =

∫
Rd

e2πix·ξ dµv,w(ξ).

Indeed, one can explicitly define µv,w using the polarisation identity as

µv,w :=
1

4
(µv+w,v+w − µv−w,v−w + iµv+iw,v+iw − iµv−iw,v−iw).

By the uniqueness of Fourier inversion, we see that µv,w is uniquely deter-
mined by v, w, and is sesquilinear with respect to these inputs. By depolar-
ising with the right normalisations, we see that this measure has total mass
O(‖v‖H‖w‖H).

Exercise 2.3.2 (Functional calculus). Show that for any bounded Borel-
measurable function m : Rd → C, there is a bounded operator m(ρ) : H →
H such that

〈m(ρ)v, w〉 =

∫
Rd

m(ξ)dµv,w(ξ)

for all unit vectors v, w, with the operator norm of m(ρ) bounded by the
supremum norm of m. Furthermore, show the map m 7→ m(ρ) is a *-
homomorphism of *-algebras, thus it is a (complex) algebra homomorphism
that also preserves the conjugation operation. In particular, for any Borel set
E, the operator µ(E) := 1E(ρ) is an orthogonal projection on H. Show that
µ is a countably additive measure taking values as orthogonal projections
on H, with µ(Rd) equal to the identity operator on H. Define a notion of
integration with respect to such measures in such a way that one has the
identities

ρ(x) =

∫
Rd

e2πix·ξ dµ(ξ)

and

m(ρ) =

∫
Rd

m(ξ) dµ(ξ)

for all x ∈ Rd and bounded Borel-measurable m. (This exercise is not
explicitly used in the sequel, though the functional calculus perspective is
definitely lurking beneath the surface in the arguments below. One can use
the results of this exercise to establish Stone’s theorem on one-parameter
groups [St1932]; see Theorem 10.3.3.)
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Now we can obtain a relative version of property (T), relating the Eu-
clidean group R2 with the semi-direct product SL2(R)nR2, defined in the
obvious manner.

Proposition 2.3.7. Let S be a compact neighbourhood of the identity in
SL2(R)nR2, and let ρ : SL2(R)nR2 → U(H) be a unitary representation.
If Kaz(SL2(R) n R2, S,H) is sufficiently small depending on S, then H
contains a non-trivial R2-invariant vector.

Remark 2.3.8. Another way of stating the conclusion of this proposition
is that the pair (SL2(R) n R2,R2) of locally compact groups has relative
property (T). See [BedeVa2008] for a more thorough discussion of this
property.

Proof. Suppose that Kaz(SL2(R)nR2, S,H) < ε for some sufficiently small
ε > 0, then there is a unit vector v in H such that ‖ρ(s)v − v‖H ≤ ε for all
s ∈ S. Now let g be an element of SL2(R) (which we can view as a subgroup
of SL2(R) n R2, and similarly for R2). Observe that

〈ρ(x)ρ(g)v, ρ(g)v〉H = 〈ρ(g(x))v, v〉H

for all x ∈ R2. Comparing this with the Fourier inversion formula (2.8) we
see that

µρ(g)v,ρ(g)v = (g∗)∗µv,v,

where (g∗)∗ is the pushforward by the adjoint g∗ of g. By the sesquilinearity
and boundedness of µv,w, we thus see that

‖(g∗)∗µv,v − µv,v‖TV � ‖ρ(g)v − v‖H .

By Lemma 2.3.4, we conclude that

µv,v({0}) ≥ 1−O(ε)

which, by (2.8), implies that

〈ρ(x)v, v〉H = 1−O(ε)

for all x ∈ R2. Using Exercise 2.1.10, we conclude that H has a non-trivial
R2-invariant vector, as claimed. �

The above proposition gives a vector which is invariant with respect
to the action of an abelian group, namely R2. The next lemma, using an
argument of Moore exploiting an asymptotic conjugation idea of Mautner,
shows how to boost invariance from a small abelian group to a larger non-
abelian group. We will only need this argument in the context of SL2(R),
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and using the three subgroups

U+ := {u+(t) : t ∈ R}
D := {d(t) : t ∈ R}
U− := {u−(t) : t ∈ R}

of SL2(R), where

u+(t) :=

(
1 t
0 1

)
d(t) :=

(
et 0
0 e−t

)
u−(t) :=

(
1 0
t 1

)
.

Proposition 2.3.9 (Mautner phenomenon). Let ρ : SL2(R) → U(H) be a
unitary representation. Then any vector v which is U+-invariant, is also
SL2(R) invariant.

Proof. The main idea (due to Moore [Mo1966]) is to show that D can be
approximated by double cosets U+u−(ε)U+ for ε arbitrarily small. More
precisely, we will use the identity(

et 0
ε e−t

)
= u+(

et − 1

ε
)u−(ε)u+(

e−t − 1

ε
) ∈ U+u−(ε)U+

for any t ∈ R and ε > 0. In particular, from the U+-invariance of v, we
have 〈

ρ

((
et 0
ε e−t

))
v, v

〉
H

= 〈u−(ε)v, v〉H .

Sending ε→ 0 we conclude that

〈d(t)v, v〉H = 〈v, v〉H ;

since d(t)v has the same length as v, we conclude that d(t)v = v, thus v is
D-invariant.

Now we use a similar argument of Mautner [Ma1957] to finish up.
Starting with the identity

d(t)u−(s)d(−t) = u−(e−ts)

for s, t ∈ R, we see from the D-invariance of v that

〈u−(s)v, v〉 = 〈u−(e−ts)v, v〉.

Sending t → ∞ and arguing as before we conclude that v is also U−-
invariant. Since U+, D, U− generate SL2(R), the claim follows. �
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Remark 2.3.10. As a corollary of the above proposition, we see that if
a probability space (X,µ) with a measure-preserving action of SL2(R) is
ergodic with respect to the SL2(R) action (in the sense that all SL2(R)-
invariant sets have either full measure or zero measure, or equivalently that
L2(X,µ)0 has no non-trivial SL2(R)-invariant vectors), then it is necessarily
ergodic with respect to the U+ action as well. Thus, for instance, the action
of U+ on SL2(R)/ SL2(Z) (which is known as the horocycle flow) is ergodic.
This is a special case of an ergodic theorem of Moore [Mo1966].

We can now establish that SL3(R) has property (T) by navigating be-
tween various subgroups of that group. Indeed, let S be a compact neigh-
bourhood of the identity in SL3(R), and suppose that ρ : SL3(R)→ U(H) is
a unitary representation with Kaz(SL3(R), S, ρ) sufficiently small. We need
to show that H contains an SL3(R)-invariant vector. To do this, we first
note that SL3(R) contains a copy of the semi-direct product SL2(R) n R2,
namely the space of all matrices in SL3(R) of the form∗ ∗ ∗∗ ∗ ∗

0 0 1


where the entries marked ∗ are unconstrained (beyond the SL3 requirement
that the entire matrix have determinant 1). Applying Proposition 2.3.7,
we conclude that H contains a non-trivial vector v which is invariant with
respect to the matrices of the form

(2.9)

1 0 ∗
0 1 ∗
0 0 1

 .

Now we work with a copy of SL2(R) in SL3(R), namely the matrices in
SL3(R) of the form

(2.10)

∗ 0 ∗
0 1 0
∗ 0 ∗

 .

The associated copy of U+ here is a subgroup of the matrices of the form
(2.9). Applying Proposition 2.3.9, we see that v is invariant under the
matrices in SL3(R) of the form (2.9). A similar argument shows that v is
also invariant with respect to matrices in SL3(R) of the form

(2.11)

1 0 0
0 ∗ ∗
0 ∗ ∗

 .

But it is easy to see (e.g. by working with the Lie algebras) that (2.10),
(2.11) generate all of SL3(R), and the claim follows.
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Exercise 2.3.3. Adapt the above argument to larger values of d to finish
the proof of Theorem 2.3.1. (Hint: one either has to extend Lemma 2.3.4 to
higher dimensions, or else use a version of the Mautner argument to boost
invariance with respect to, say, a copy of SL3(R), to invariance with respect
to larger subgroups of SLd(R).)

2.4. A more elementary approach

In Corollary 2.3.2 we constructed an explicit family of expander graphs,
but the verification of the expander graph property was quite complicated,
involving for instance the theory of induced representations, Bochner’s the-
orem, the Riesz representation theorem, and many other tools besides. It
turns out that this is overkill; if all one wants to do is construct expanders
(as opposed to establishing property (T) for various groups), one can skip
much of the above theory and establish expansion by more elementary meth-
ods (one still needs some Fourier analysis, but now just for finite abelian
groups). In this section we outline this approach, following the work of
Gabber-Galil [GaGa1981] and Jimbo-Maruocka [JiMa1987], as presented
in [HoLiWi2006].

To avoid the need to exploit Mautner’s phenomenon, the example is
based on the semi-direct product SL2(R) n R2 (or more accurately, the
lattice SL2(Z) n Z2) rather than SLd(R) or SLd(Z). More precisely, we
show

Theorem 2.4.1. Let S be a symmetric finite set generating SL2(Z) n Z2.
Then the Schreier graphs12 Sch((Z/nZ)2, πn(S)) form an one-sided expander
family, where πn : SL2(Z) n Z2 → SL2(Z/nZ) n (Z/nZ)2 is the obvious
projection homomorphism.

One can deduce this theorem from Proposition 2.3.7 and (a relative
version of) Proposition 2.2.7. We will not do so here, but instead establish
the theorem directly. We first need a discrete variant of Lemma 2.3.4:

Exercise 2.4.1. Let S be a finite generating subset of SL2(Z), and let ε > 0.
Suppose that µ is a probability measure on Z2 with the property that

‖s∗µ− µ‖TV ≤ ε

for all s ∈ S, where s acts on Z2 in the obvious manner. Show that µ({0}) =
1−O(ε), where the implied constant can depend on S.

12Here, we allow the Schreier graphs to contain loops or repeated edges; one has to check

that the theory of expander graphs used here extends to this setting, but this is routine and will
be glossed over here.
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Now we prove the theorem. Suppose for contradiction that the Schreier
graphs do not form a one-sided expander family. Then we obtain a family
of nearly invariant vectors:

Exercise 2.4.2. With the above assumption, show that after passing to a
subsequence of n’s, one can find a sequence fn ∈ `2((Z/nZ)2) of mean zero
functions of `2 norm 1 such that

sup
s∈S
‖ρn(s)fn − fn‖`2((Z/nZ)2) = o(1),

where ρn is the quasiregular representation of SL2(Z)nZ2 on (Z/nZ)2, and
o(1) denotes a quantity that goes to zero as n→∞.

Let fn be as in the above exercise. If we let e1, e2 be the generators of
the translation group Z2, we see in particular that

‖ρn(ej)fn − fn‖`2((Z/nZ)2) = o(1)

for j = 1, 2. If we then introduce the finite Fourier transform

f̂n(ξ1, ξ2) :=
1

n

∑
x1,x2∈Z/nZ

fn(x1, x2)e−2πi(x1ξ1+x2ξ2)/n,

normalised to be an isometry on `2((Z/nZ)2), we conclude from Plancherel’s
theorem that

‖(e−2πiξj/n − 1)f̂n(ξ1, ξ2)‖`2ξ1,ξ2 ((Z/nZ)2) = o(1).

In particular, we can find a ball Bn of radius o(n) centred at the origin in

(Z/nZ)2 on which f̂n concentrates almost all of its `2 mass:

‖f̂n‖`2((Z/nZ)2\Bn) = o(1).

Let gn ∈ `2(Z2) be the restriction of f̂n to Bn, which one then identifies with
a subset of Z2. Then we have

‖gn‖`2(Z2) = 1− o(1).

If s is any fixed element of SL2(Z), then we have

‖ρn(s)fn − fn‖`2((Z/nZ)2) = o(1)

and thus by Fourier duality

‖f̂n ◦ s∗ − f̂n‖`2((Z/nZ)2) = o(1).

Restricting to Bn and then embedding into Z2, we conclude that

‖gn ◦ s∗ − gn‖`2(Z2) = o(1).

Applying Exercise 2.4.1, we conclude that

gn(0) = 1− o(1).
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But as the fn have mean zero, we have gn(0) = 0, giving the desired con-
tradiction.

Remark 2.4.2. One advantage of this more elementary approach is that it
is easier to obtain explicit bounds on the expansion constant of these graphs;
see [JiMa1987] for details.





Chapter 3

Quasirandom groups

In Chapter 2 we saw how a representation-theoretic property of groups,
namely Kazhdan’s property (T), could be used to demonstrate expansion in
Cayley graphs. In this chapter we discuss a different representation-theoretic
property of groups, namely quasirandomness, which is also useful for demon-
strating expansion in Cayley graphs, though in a somewhat different way
to property (T). For instance, whereas property (T), being qualitative in
nature, is only interesting for infinite groups such as SLd(Z) or SLd(R), and
only creates Cayley graphs after passing to a finite quotient, quasirandom-
ness is a quantitative property which is directly applicable to finite groups,
and is able to deduce expansion in a Cayley graph, provided that random
walks in that graph are known to become sufficiently “flat” in a certain
sense.

The definition of quasirandomness is easy enough to state:

Definition 3.0.3 (Quasirandom groups). Let G be a finite group, and let
D ≥ 1. We say that G is D-quasirandom if all non-trivial unitary representa-
tions ρ : G→ U(H) of G have dimension at least D. (Recall a representation
is trivial if ρ(g) is the identity for all g ∈ G.)

Exercise 3.0.3. Let G be a finite group, and let D ≥ 1. A unitary rep-
resentation ρ : G → U(H) is said to be irreducible if H has no G-invariant
subspaces other than {0} and H. Show that G is D-quasirandom if and only
if every non-trivial irreducible representation of G has dimension at least D.

Remark 3.0.4. The terminology “quasirandom group” was introduced ex-
plicitly (though with slightly different notational conventions) in [Go2008];
the name arises because dense Cayley graphs in quasirandom groups are

59
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quasirandom graphs in the sense of Chung, Graham, and Wilson [ChGrWi1989],
as we shall see below. This property had already been used implicitly to con-
struct expander graphs in [SaXu1991], [Ga2002], [BoGa2008]. One can
of course define quasirandomness for more general locally compact groups1

than the finite ones, but we will only need this concept in the finite case.

Quasirandomness behaves fairly well with respect to quotients and short
exact sequences:

Exercise 3.0.4. Let 0 → H → G → K → 0 be a short exact sequence of
finite groups H,G,K.

(i) IfG isD-quasirandom, show thatK isD-quasirandom also. (Equiv-
alently: any quotient of a D-quasirandom finite group is again a
D-quasirandom finite group.)

(ii) Conversely, if H and K are both D-quasirandom, show that G is D-
quasirandom also. (In particular, the direct or semidirect product
of two D-quasirandom finite groups is again a D-quasirandom finite
group.)

Informally, we will call G quasirandom if it is D-quasirandom for some
“large” D, though the precise meaning of “large” will depend on context.
For applications to expansion in Cayley graphs, “large” will mean “D ≥ |G|c
for some constant c > 0 independent of the size of G”, but other regimes of
D are certainly of interest.

The way we have set things up, the trivial group G = {1} is infinitely
quasirandom (i.e. it is D-quasirandom for every D). This is however a
degenerate case and will not be discussed further here. In the non-trivial
case, a finite group can only be quasirandom if it is large and has no large
subgroups:

Exercise 3.0.5. Let D ≥ 1, and let G be a finite D-quasirandom group.

(i) Show that if G is non-trivial, then |G| ≥ D + 1. (Hint: use
the mean zero component τ �`2(G)0 of the regular representation

τ : G → U(`2(G)), see Example 2.1.3.) In particular, non-trivial
finite groups cannot be infinitely quasirandom.

(ii) Show that any proper subgroup H of G has index [G : H] ≥ D+ 1.
(Hint: use the mean zero component of the quasiregular represen-
tation, see Example 2.1.4.)

The following exercise shows that quasirandom groups have to be quite
non-abelian, and in particular perfect :

1For instance, one can view the paper [KuSt1960] as exploiting the quasirandomness prop-
erties of the locally compact group SL2(R) to obtain mixing estimates in that group.
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Exercise 3.0.6 (Quasirandomness, abelianness, and perfection). Let G be
a finite group.

(i) If G is abelian and non-trivial, show that G is not 2-quasirandom.
(Hint: use Fourier analysis or the classification of finite abelian
groups.)

(ii) Show that G is 2-quasirandom if and only if it is perfect, i.e. the
commutator group [G,G] is equal to G. (Equivalently, G is 2-
quasirandom if and only if it has no non-trivial abelian quotients.)

(iii) IfG is a perfect group, Z(G) is the centre2 ofG, andG/Z(G) isD2−
1-quasirandom for some D ≥ 1, show that G is D-quasirandom.
(Hint: starting from a unitary action of G on a finite-dimensional
Hilbert space H, consider the conjugation action of G/Z(G) on
sl(H).)

Later on we shall see that there is a converse to the above two exer-
cises; any non-trivial perfect finite group with no large subgroups will be
quasirandom.

Exercise 3.0.7. Let G be a finite D-quasirandom group. Show that for any
subgroup G′ of G, G′ is D/[G : G′]-quasirandom, where [G : G′] := |G|/|G′|
is the index of G′ in G. (Hint: use induced representations.)

Exercise 3.0.8. Let D ≥ 1, and let G be a finite simple group. Show that if
any non-trivial subgroup of G is D-quasirandom, then G is D-quasirandom
also. This suggests that simple groups are quite likely to be rather quasir-
andom; this intuition will be confirmed in the specific examples of simple
(or almost simple) groups to be discussed shortly.

Now we give an example of a more quasirandom group.

Lemma 3.0.5 (Frobenius lemma). If Fp is a field of some prime order p,

then SL2(Fp) is p−1
2 -quasirandom.

This should be compared with the cardinality |SL2(Fp)| of the special
linear group, which is easily computed to be (p2 − 1)× p = p3 − p.

Proof. We may of course take p to be odd. Suppose for contradiction that
we have a non-trivial representation ρ : SL2(Fp) → Ud(C) on a unitary

group of some dimension d with d < p−1
2 . Set a to be the group element

a :=

(
1 1
0 1

)
,

2The centre Z(G) := {g ∈ G : gh = hg for all h ∈ G} of a group G consists of all the elements
of G which commute with (or centralise) all the other elements of G.
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and suppose first that ρ(a) is non-trivial. Since ap = 1, we have ρ(a)p = 1;
thus all the eigenvalues of ρ(a) are pth roots of unity. On the other hand, by
conjugating a by diagonal matrices in SL2(Fp), we see that a is conjugate to
am (and hence ρ(a) conjugate to ρ(a)m) whenever m is a quadratic residue
mod p. As such, the eigenvalues of ρ(a) must be permuted by the operation
x 7→ xm for any quadratic residue mod p. Since ρ(a) has at least one non-

trivial eigenvalue, and there are p−1
2 distinct quadratic residues, we conclude

that ρ(a) has at least p−1
2 distinct eigenvalues. But ρ(a) is a d×d matrix with

d < p−1
2 , a contradiction. Thus a lies in the kernel of ρ. By conjugation, we

then see that this kernel contains all unipotent matrices. But these matrices
generate SL2(Fp) (see exercise below), and so ρ is trivial, a contradiction. �

Exercise 3.0.9. Show that for any prime p, the unipotent matrices(
1 t
0 1

)
,

(
1 0
t 1

)
for t ranging over Fp generate SL2(Fp) as a group.

Exercise 3.0.10. Let G be a finite group, and let D ≥ 1. If G is generated
by a collection G1, . . . , Gk of D-quasirandom subgroups, show that G is itself
D-quasirandom.

Exercise 3.0.11. Show that SLd(Fp) is p−1
2 -quasirandom for any d ≥ 2 and

any prime p. (This is not sharp; the optimal bound here is �d p
d−1, which

follows from the results in [LaSe1974].)

As a corollary of the above results and Exercise 3.0.4, we see that the
projective special linear group P SLd(Fp) is also p−1

2 -quasirandom.

Remark 3.0.6. One can ask whether the bound p−1
2 in Lemma 3.0.5 is

sharp, assuming of course that p is odd. Noting that SL2(Fp) acts linearly
on the plane F2

p, we see that it also acts projectively on the projective line

PF 1
p := (F2

p\{0})/F×p , which has p+ 1 elements. Thus SL2(Fp) acts via the

quasiregular representation on the p+1-dimensional space `2(PF 1
p ), and also

on the p-dimensional subspace `2(PF 1
p )0; this latter representation (known

as the Steinberg representation) is irreducible. This shows that the p−1
2

bound cannot be improved beyond p. More generally, given any character
χ : F×p → S1, SL2(Fp) acts on the p + 1-dimensional space Vχ of functions

f ∈ `2(F2
p\{0}) that obey the twisted dilation invariance f(tx) = χ(t)f(x)

for all t ∈ F×p and x ∈ F2
p\{0}; these are known as the principal series rep-

resentations. When χ is the trivial character, this is the quasiregular repre-
sentation discussed earlier. For most other characters, this is an irreducible
representation, but it turns out that when χ is the quadratic representation
(thus taking values in {−1,+1} while being non-trivial), the principal series
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representation splits into the direct sum of two p+1
2 -dimensional representa-

tions, which comes very close to matching the bound in Lemma 3.0.5. There
is a parallel series of representations to the principal series (known as the dis-
crete series) which is more complicated to describe (roughly speaking, one
has to embed Fp in a quadratic extension Fp2 and then use a rotated version
of the above construction, to change a split torus into a non-split torus), but

can generate irreducible representations of dimension p−1
2 , showing that the

bound in Lemma 3.0.5 is in fact exactly sharp. These constructions can
be generalised to arbitrary finite simple groups of Lie type (as defined in
Section 12.3) using Deligne-Luzstig theory, but this is beyond the scope of
this text.

Exercise 3.0.12. Let q be a power of a odd prime. Show that SL2(Fq)

is q−1
2 -quasirandom. (Hint: diagonalise an irreducible representation of

SL2(Fq) relative to the action of the unipotent (and abelian) group{(
1 t
0 1

)
: t ∈ Fq

}
and then study how this action is conjugated by the action of diagonal
matrices in SL2(Fq).)

Exercise 3.0.13. Let p be an odd prime. Show that for any n ≥ p+ 2, the
alternating group An (i.e. the group of even permutations on n elements) is
p−1-quasirandom. (Hint: show that all cycles of order p in An are conjugate
to each other in An (and not just in the symmetric group Sn); in particular,
a cycle is conjugate to its jth power for all j = 1, . . . , p− 1. Also, as n ≥ 5,
An is simple, and so the cycles of order p generate the entire group.)

Remark 3.0.7. By using more precise information on the representations
of the alternating group (using the theory of Specht modules and Young
tableaux ), one can show the slightly sharper statement that An is n − 1-
quasirandom for n ≥ 6 (but is only 3-quasirandom for n = 5 due to icosa-
hedral symmetry, and 1-quasirandom for n ≤ 4 due to lack of perfectness).
Using Exercise 3.0.5 with the index n subgroup An−1, we see that the bound
n− 1 cannot be improved. Thus, An (for large n) is not as quasirandom as
the special linear groups SLd(Fp) (for p large and d bounded), because in
the latter case the quasirandomness is as strong as a power of the size of the
group, whereas in the former case it is only logarithmic in size.

If one replaces the alternating group An with the slightly larger sym-
metric group Sn, then quasirandomness is destroyed (since Sn, having the
abelian quotient Sn/An, is not perfect); indeed, Sn is 1-quasirandom and no
better.

Remark 3.0.8. Thanks to the monumental achievement of the classification
of finite simple groups, we know that apart from a finite number (26, to be
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precise) of sporadic exceptions, all finite simple groups (up to isomorphism)
are either a cyclic group Z/pZ, an alternating group An, or is a finite simple
group of Lie type such as P SLd(Fp); see Section 12.3 for more discussion
of the latter family of groups. In the case of finite simple groups G of Lie
type with bounded rank r = O(1), it is known (see [LaSe1974]) that such
groups are � |G|c-quasirandom for some c > 0 depending only on the rank.
On the other hand, by the previous remark, the large alternating groups
do not have this property, and one can show that the finite simple groups
of Lie type with large rank also do not have this property. Thus, we see
using the classification that if a finite simple group G is |G|c-quasirandom
for some c > 0 and |G| is sufficiently large depending on c, then G is a
finite simple group of Lie type with rank Oc(1). It would be of interest to
see if there was an alternate way to establish this fact that did not rely on
the classification, as it may lead to an alternate approach to proving the
classification (or perhaps a weakened version thereof).

A key reason why quasirandomness is desirable for the purposes of
demonstrating expansion is that quasirandom groups happen to be rapidly
mixing at large scales, as we shall see below the fold. As such, quasiran-
domness is an important tool for demonstrating expansion in Cayley graphs,
though because expansion is a phenomenon that must hold at all scales, one
needs to supplement quasirandomness with some additional input that cre-
ates mixing at small or medium scales also before one can deduce expansion.
As an example of this technique of combining quasirandomness with mixing
at small and medium scales, we present a proof (due to [SaXu1991], and
simplified in [Ga2002]) of a weak version of the famous “3/16 theorem” of
Selberg [Se1965] on the least non-trivial eigenvalue of the Laplacian on a
modular curve, which among other things can be used to construct a family
of expander Cayley graphs in SL2(Z/NZ); compare this with the property
(T)-based methods in Chapter 2, which could construct expander Cayley
graphs in SLd(Z/NZ) for any fixed d ≥ 3.

3.1. Mixing in quasirandom groups

Let G be a finite group. Given two functions f, g ∈ `2(G), we can define the
convolution f ∗ g ∈ `2(G) by the formula

f ∗ g(x) :=
∑
y∈G

f(y)g(y−1x) =
∑
y∈G

f(xy−1)g(y).

This operation is bilinear and associative, but is not commutative unless G
is abelian. From the Cauchy-Schwarz inequality one has

‖f ∗ g‖`∞(G) ≤ ‖f‖`2(G)‖g‖`2(G)
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and hence

‖f ∗ g‖`2(G) ≤ |G|1/2‖f‖`2(G)‖g‖`2(G).

This inequality is sharp in the sense that if we set f and g to both be
constant-valued, then the left-hand side and right-hand side match. For
abelian groups, one can also see this example is sharp when f and g are
multiples of the same character.

It turns out, though, that if one restricts one of f or g (or both) to be
of mean zero, and G is quasirandom, then one can improve this inequality,
which first appeared explicitly in [BaNiPy2008]:

Proposition 3.1.1 (Mixing inequality). Let G be a finite D-quasirandom
group, and let f, g ∈ `2(G). If at least one of f, g has mean zero, then

‖f ∗ g‖`2(G) ≤ D−1/2|G|1/2‖f‖`2(G)‖g‖`2(G).

Proof. By subtracting a constant from f or g, we may assume that f or g
both have mean zero.

Observe that f ∗ g (being a superposition of right-translates of f) also
has mean zero. Thus, we see that we may define an operator Tg : `2(G)0 →
`2(G)0 by setting Tgf := f ∗ g. It thus suffices to show that the operator

norm of Tg is at most D−1/2|G|1/2‖g‖`2(G).

Fix g. We can view Tg as a |G| − 1 × |G| − 1 matrix. We apply the
singular value decomposition to this matrix to obtain singular values

σ1 ≥ . . . ≥ σ|G|−1 ≥ 0

of Tg, together with associated singular vectors. The operator norm of Tg
is the largest singular value σ1. The operator T ∗g Tg is then a self-adjoint

operator (or matrix) with eigenvalues σ2
1, . . . , σ

2
|G|−1. In particular, we have

trT ∗g Tg = σ2
1 + . . .+ σ2

|G|−1.

Now, a short computation shows that T ∗g Tgf = f∗g∗g̃, where g̃(x) := g(x−1),

and (by embedding `2(G)0 in `2(G), and noting that T ∗g Tg annihilates con-
stants) the trace can computed as

trT ∗g Tg = |G|g ∗ g̃(0) = |G|‖g‖2`2(G).

Thus, if V is the eigenspace of T ∗g Tg corresponding to the eigenvalue σ2
1 (so

that the dimension of V is the multiplicity of σ1), we have

dim(V )σ2
1 ≤ |G|‖g‖2`2(G).

Now observe that if τ : G → U(`2(G)0) is the left-regular representation
(restricted to `2(G)0) then

T ∗g Tgτ(h)f = τ(h)T ∗g Tgf
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for any f ∈ `2(G)0 and h ∈ G (this is a special case of the associativity of
convolution). In particular, we see that V is invariant under τ . Since τ has
no non-trivial invariant vectors in `2(G)0, we conclude from quasirandom-
ness that V has dimension at least D, and the claim follows. �

Remark 3.1.2. One can also establish the above inequality using the non-
abelian Fourier transform (which is based on the Peter-Weyl theorem com-
bined with Schur’s lemma, and is developed for instance in [Ta2013, Section
2.8]); we leave this as an exercise for the interested reader.

Exercise 3.1.1. Let A,B,C be subsets of a finite D-quasirandom group G.
Show that ∥∥∥∥1A ∗ 1B −

|A||B|
|G|

∥∥∥∥
`2(G)

≤ D−1/2|G|1/2|A|1/2|B|1/2

and ∥∥∥∥1A ∗ 1B ∗ 1C −
|A||B||C|
|G|

∥∥∥∥
`∞(G)

≤ D−1/2|G|1/2|A|1/2|B|1/2|C|1/2.

Conclude in particular that

|AB| ≥ |G| − |G|3

D|A||B|

(with the convention that |G|3
D|A||B| = +∞ if A or B is empty), and that

ABC = G whenever |A||B||C| > |G|3/D. (The bounds here are not quite
sharp, but are simpler than the optimal bounds, and suffice for most appli-
cations.)

Thus, for instance, if A is a subset of a finite D-quasirandom group G
of density |A|/|G| more than D−1/3, then A2 will be most of G (with fewer
than |A| elements omitted), and A3 will be all of G; thus large subsets of
a quasirandom group rapidly expand to fill out the whole group. In the
converse direction, we have

Exercise 3.1.2. Let D ≥ 1, and let G be a finite group which is not D-

quasirandom. Show that there exists a subset A of G with |A|/|G| ≥ C−D2

for some absolute constant C > 1, such that A3 ( G. (Hint: by hypothesis,
one has a non-trivial unitary representation ρ : G → U(H) of dimension at
most D. Show that ρ(G) contains an element at distance � 1 from the
identity in operator norm, and take A to be the preimage of a suitable ball
around the identity in the operator norm, and use a pigeonhole (or Dirichlet
box principle) argument to obtain the lower bound on A.)

One can improve this result by using a quantitative form of Jordan’s
theorem; see Section 3.2 below.
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Exercise 3.1.3 (Mixing inequality for actions). LetG be a finiteD-quasirandom
group acting (on the left) on a discrete set X. Given functions f ∈ `2(G)
and g ∈ `2(X), one can define the convolution f ∗ g ∈ `2(X) in much the
same way as before:

f ∗ g(x) :=
∑
h∈G

f(h)g(h−1x).

Show that
‖f ∗ g‖`2(X) ≤ D−1/2|G|1/2‖f‖`2(G)‖g‖`2(X).

whenever f has mean zero, or whenever g has mean zero on every orbit of
G.

One can use quasirandomness to show that Cayley graphs of very large
degree k in a quasirandom group are expanders:

Exercise 3.1.4. Let Cay(G,S) be a k-regular Cayley graph in a finite D-
quasirandom group G on n vertices.

(i) If A, B are subsets of G, show that∣∣∣∣E(A,B)− k

n
|A||B|

∣∣∣∣ ≤
√
kn|A||B|

D

(compare with the expander mixing lemma, Exercise 1.2.2).

(ii) Show that Cay(G,S) is a two-sided ε-expander whenever

ε ≤ 1−
√

n

Dk
.

Unfortunately, the above result is only non-trivial in the regime k �
n/D, whereas for our applications we are interested instead in the regime
when k = O(1). We record a tool for this purpose.

Proposition 3.1.3 (Using quasirandomness to demonstrate expansion).
Let Cay(G,S) be a k-regular Cayley graph in a finite group G. Assume the
following:

(i) (Quasirandomness) G is c|G|α-quasirandom for some c, α > 0.

(ii) (Flattening of random walk) One has

(3.1) ‖µ∗n‖`2(G) ≤ C|G|−1/2+β

for some C, β, n > 0 with β < α/2 and n ≤ C log |G|, where µ :=
1
|S|
∑

s∈S δs and µ∗n is the n-fold convolution of µ.

Then G is a two-sided ε-expander for some ε > 0 depending only on c, α, C, β, k,
if |G| is sufficiently large depending on these quantities. If we replace µ by
ν := 1

2δ1 + 1
2µ in the flattening hypothesis, then G is a one-sided ε-expander

instead.
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Proof. We allow implied constants to depend on c, α, C, β. We will just
prove the first claim, as the second claim is similar. By Exercise 2.0.8, it
will suffice to show that ∥∥∥∥µ∗m − 1

|G|

∥∥∥∥
`2(G)

� |G|−1

(say) for some m = O(log |G|). But from Proposition 3.1.1 (with f :=
µ∗m − 1

|G| and g := µ∗n) and the hypotheses we have∥∥∥∥µ∗(m+n) − 1

|G|

∥∥∥∥
`2(G)

� |G|−α/2+β

∥∥∥∥µ∗m − 1

|G|

∥∥∥∥
`2(G)

for any m ≥ 0. Iterating this (starting from, say, m = n, and advancing in
steps of n O(1) times) we obtain the claim. �

Exercise 3.1.5. Obtain an alternate proof of the above result that proceeds
directly from the spectral decomposition of the adjacency operator Af :=
f ∗ µ into eigenvalues and eigenvectors and quasirandomness, rather than
through Exercise 2.0.8 and Proposition 3.1.1. (This alternate approach is
closer in spirit to the arguments of [SaXu1991] and [BoGa2008], though
the two approaches are largely equivalent in the final analysis.)

Informally, the flattening hypothesis in Proposition 3.1.3 asserts that
by time O(log |G|), the random walk has expanded to the point where it is
covering a large portion of the group G (roughly speaking, it is spread out
over a set of size at least |G|1−2β). The point is that the scale of this set is
large enough for the quasirandomness properties of the group G to then mix
the random walk rapidly towards the uniform distribution. However, this
proposition provides no tools with which to prove this flattening property;
this task will be a focus of subsequent chapters.

The following exercise extends some of the above theory from quasiran-
dom groups to “virtually quasirandom” groups, which have a bounded index
subgroup that is quasirandom, but need not themselves be quasirandom.

Exercise 3.1.6 (Virtually quasirandom groups). Let G be a finite group
that contains a normal D-quasirandom subgroup G′ of index at most K.

(i) If f, g ∈ `2(G), and at least one of f, g has mean zero on every coset
of G′, show that

‖f ∗ g‖`2(G) ≤ D−1/2|G|1/2‖f‖`2(G)‖g‖`2(G).

(ii) If |D| ≥ c|G|α for some c, α > 0, and Cay(G,S) is a connected
k-regular Cayley graph obeying (3.1) for some C, β, n > 0 with
β < α/2 and n ≤ C log |G|, show that G is a two-sided ε-expander
for some ε > 0 depending only on c, α, C, β, k,K.
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3.2. An algebraic description of quasirandomness

As defined above, quasirandomness is a property of representations. How-
ever, one can reformulate this property (at a qualitative level, at least) in a
more algebraic fashion, by means of Jordan’s theorem:

Theorem 3.2.1 (Jordan’s theorem). [Jo1878] Let G be a finite subgroup
of Ud(C) for some d ≥ 1. Then G contains a normal abelian subgroup of
index at most K(d), where K(d) depends only on d.

A proof of this theorem (giving a rather poor value of K(d)) may be
found in [Ta2013, §1.1]. The optimal value of K(d) is known for almost
all d, thanks to the classification of finite simple groups: for instance, it
is a result of Collins [Co2007] that K(d) = (d + 1)! for d ≥ 71 (which is
attained with the example of the symmetric group Sd+1 which acts on the

space Cd+1
0 of d+ 1-dimensional complex vectors whose coefficients sum to

zero).

Jordan’s theorem can be used to give a qualitative description of quasir-
andomness, providing a converse to Exercises 3.0.5 and 3.0.6:

Exercise 3.2.1. Let D > 1 be an integer. Let G be a perfect finite group,
with the property that all proper normal subgroups of G have index greater
than K(D− 1), where K(D− 1) is the quantity in Jordan’s theorem. Show
that G is D-quasirandom.

Conclude in particular that any finite simple nonabelian group of cardi-
nality greater than K(D − 1) is D-quasirandom.

By using the classification of finite simple groups more carefully, Nikolov
and Pyber [NiPy2011] were able to replace K(D−1) here by 1010D2. Using
related arguments, they also showed that if G was not D-quasirandom, then
there was a subset A of G with cardinality� |G|/D such that A3 6= G, thus
giving a reasonably tight converse to Exercise 3.1.1.

3.3. A weak form of Selberg’s 3/16 theorem

Remark 3.3.1. This section presumes some familiarity with Riemannian
geometry, as well as the functional analysis of Sobolev spaces and distri-
butions. See for instance [Ta2009b, §2.1] for a very brief introduction to
Riemannian geometry, and [Ta2010b, §1.13-1.14] for an introduction to dis-
tributions and Sobolev spaces. On the other hand, the material here is not
directly used in later chapters.

We now give an application of quasirandomness to establish the following
result, first observed explicitly in [LuPhSa1988] as a corollary of a famous
theorem of Selberg [Se1965]:
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Theorem 3.3.2 (Selberg’s expander construction). If S is a symmetric set
of generators of SL2(Z) that does not contain the identity, then the Cay-
ley graphs Cay(SL2(Fp), πp(S)) form a one-sided expander family, where
πp : SL2(Z) → SL2(Fp) is the obvious projection homomorphism, and p
ranges over primes.

This is the d = 2 analogue of Margulis’s expander construction (Corol-
lary 2.2.9), except that the modulus n has been restricted here to be prime.
This restriction can be removed with some additional effort, but we will
not discuss this issue here. The condition that S generates the entire group
SL2(Z) can be substantially relaxed; we will discuss this point in later chap-
ters.

In the property (T) approach to expansion, one passed from discrete
groups such as SLd(Z) to continuous groups such as SLd(R), in order to
take advantage of tools from analysis (such as limits). Similarly, to prove
Theorem 3.3.2, we will pass from SL2(Z) to SL2(R). Actually, it will be
convenient to work with the quotient space H := SL2(R)/ SO2(R), better
known as the hyperbolic plane. We will endow this plane with the structure
of a Riemannian manifold, in order to access the Laplace-Beltrami operator
on that plane, which is a continuous analogue (after some renormalisation)
of the adjacency operator of a Cayley graph, which enjoys some nice exact
identities which are difficult to discern in the discrete world.

We now therefore digress from the topic of expansion to recall the ge-
ometry of the hyperbolic plane. It will be convenient to switch between a
number of different coordinatisations of this plane. Our primary model will
be the half-plane model:

Definition 3.3.3 (Poincaré half-plane model). The Poincaré half-plane is
the upper half-plane H := {x+ iy ∈ C : y > 0} with the Riemannian metric

ds2 := dx2+dy2

y2
. The (left) action of SL2(R) on this half-plane is given by

the formula (
a b
c d

)
z :=

az + b

cz + d
.

Exercise 3.3.1. Verify that SL2(R) acts isometrically and transitively on
H, with stabiliser group conjugate to SO2(R); thus H is isomorphic (as an
SL2(R)-homogeneous space) to SL2(R)/ SO2(R).

Note that in some of the literature, a right action is used instead of a left
action, leading to some reversals in the notational conventions used below,
but this does not lead to any essential changes in the arguments or results.
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Exercise 3.3.2. Show that the distance d(z, w) between two points z, w ∈
H is given by the formula

cosh d(z, w) = 1 + 2
|z − w|2

4Im(z)Im(w)
.

We can also use the model of the Poincaré disk D := {a + ib ∈ C :

a2 + b2 < 1} with the Riemannian metric ds2 := 4 da2+db2

(1−a2−b2)2
.

Exercise 3.3.3. Show that the Cayley transform z 7→ z−i
z+i is an isometric

isomorphism from the half-plane H to the disk D.

Expressing an element a + ib of the Poincaré disk in exponential polar
coordinates as tanh(ρ/2)eiθ, we can also model the Poincaré disk (in slightly
singular coordinates) as the half-cylinder {(ρ, θ) : ρ ∈ [0,+∞); θ ∈ R/2πZ}
with metric ds2 = dρ2 + sinh2 ρdθ2. (Compare with the Euclidean plane
in polar coordinates, which is similar but with the sinh2 ρ factor replaced
by ρ2, or the sphere in Euler coordinates, which is also similar but with ρ
restricted to [0, π] and sinh2 ρ replaced by sin2 ρ. This similarity reflects the
fact that these three Riemannian surfaces have constant curvature −1, 0,+1
respectively.)

The action of SL2(R) can of course be described explicitly in the disk
or half-plane models, but we will not need these explicit formulae here.

A Riemannian metric on a manifold always generates a measure dµ
on that manifold. For the Poincaré half-plane, the measure is dµ = dxdy

y2
.

For the Poincaré disk, it is dµ = 4 dadb
(1−a2−b2)2

. For the half-cylinder, it is

sinh ρ dρdθ. In all cases, the action of SL2(R) will preserve the measure,
because it preserves the metric, thus one can view dµ as a Haar measure on
the hyperbolic plane.

A Riemannian metric also generates a Laplace-Beltrami operator ∆. In
the Poincaré half-plane model, it is

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
;

in the Poincaré disk model, it is

∆ =
(1− a2 − b2)2

4

(
∂2

∂a2
+

∂2

∂b2

)
;

and in the half-cylinder model, it is

∆ =
∂2

∂ρ2
+

1

sinh ρ

∂

∂ρ
+

1

sinh2 ρ

∂2

∂θ2
.

Again, in all cases, the Laplacian will commute with the action of SL2(R),
because this action preserves the metric.
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The discrete group SL2(Z) acts on the hyperbolic plane, giving rise to a
quotient X(1) := SL2(Z)\H, known as the principal modular curve of level
1. This quotient can also be viewed by taking the (closure of a) fundamental
domain

Ω := {z ∈ H : |Re(z)| ≤ 1/2; |z| ≥ 1}
and then identifying −1/2 + it with 1/2 + it on the left and right sides of
this domain, and also identifying z with −1/z on the lower boundary of this
domain. The quotient X(1) is not compact, but it does have finite measure
with respect to µ; indeed, outside of a compact set, X(1) behaves like the
cusp

(3.2) {x+ iy : −1/2 ≤ x ≤ 1/2; y > C}

for any constant C > 1, again identifying the x = −1/2 boundary with the
x = 1/2 boundary, and this cusp has measure∫ ∞

C

∫ 1/2

−1/2

dxdy

y2
<∞.

Thus µ descends to a finite Haar measure on X(1).

Remark 3.3.4. One can interpret the modular curve geometrically as fol-
lows. As in Chapter 2, one can think of SL2(R) as the space of all uni-
modular lattices in R2 (or equivalently, in C) with two marked generators
z1, z2 ∈ C with Im(z1z2) = 1. We can then map SL2(R) to the Poincaré
half-plane H by sending such a lattice with generators z1, z2 to the point
z2/z1; note that the fibers of this map correspond to rotations of the lat-
tice and marked generators, thus identifying H with SL2(R)/ SO2(R). The
action of SL2(Z) on H corresponds to moving the generators around while
keeping the lattice (or more precisely, the lattice modulo rotations) fixed.
The (interior of the) fundamental domain Ω then corresponds to the selec-
tion of generators given by setting z1 to be the non-zero lattice element of
smallest norm, and z2 to be the generator whose z1 component lies between
−z1/2 and +z1/2.

The quotient X(1) is not quite a smooth Riemannian manifold, due
to the presence of partially fixed points of the SL2(Z) action at +i and
±1/2 +

√
3/2i (of order 2 and order 3 respectively), and is thus technically

an orbifold rather than a manifold. However, this distinction turns out to
not significantly affect the analysis and will be glossed over here.

The Laplace-Beltrami operator ∆ is defined on smooth3 compactly sup-
ported functions f ∈ C∞c (H) on H, and then descends to an operator on

3Here, we use the smooth structure on X(1) inherited from H, thus a function is smooth at
a point in X(1) if it lifts to a function smooth at the preimage of that point.
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smooth compactly supported functions f ∈ C∞c (X(1)) on X(1). On H, we
have the integration by parts formula∫

H
(−∆f)g dµ =

∫
H
〈∇f,∇g〉 dµ

where ∇ is the gradient with respect to the Riemannian metric, and 〈, 〉 the
inner product; in the half-plane coordinates, we have

〈∇f,∇g〉 = y2

(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y

)
,

in the disk model, it is

〈∇f,∇g〉 =
(1− a2 − b2)2

4

(
∂f

∂a

∂g

∂a
+
∂f

∂b

∂g

∂b

)
and in the half-cylinder model, it is

〈∇f,∇g〉 =
∂f

∂ρ

∂g

∂ρ
+

1

tanh2 ρ

∂f

∂θ

∂g

∂θ
.

In particular, we have the positive definiteness property

〈−∆f, f〉L2(H,µ) =

∫
H
|∇f |2 dµ ≥ 0

for all f ∈ C∞c (H). This descends to X(1):

〈−∆f, f〉L2(X(1),µ) =

∫
X(1)
|∇f |2 dµ ≥ 0

Thus−∆ is a symmetric positive-definite densely-defined operator on L2(X(1), µ).
One can in fact show (by solving some PDE, such as the wave equation or
the resolvent equation, and exploiting at some point the fact that the Rie-
mannian manifold X(1) is complete) that −∆ is essentially self-adjoint and
is thus subject to the spectral theorem (see Section 10), but we will avoid
using the full force of spectral theory here.

Since X(1) has finite measure and ∆1 = 0, we see that 1 ∈ L2(X(1), µ) is
an eigenfunction of ∆ (or −∆) with eigenvalue zero. We eliminate this eigen-
function by working in the space L2(X(1))0 (or C∞c (X(1))0) of functions in
L2(X(1)) (or C∞c (X(1))) of mean zero. Let us now define the spectral gap
λ1(X(1)) to be the quantity

λ1(X(1)) := inf

{∫
X(1)
|∇f |2 dµ : f ∈ C∞c (X(1))0; ‖f‖L2(X(1)) = 1

}
.

Then λ1(X(1)) ≥ 0. Using the spectral theorem, one can interpret the spec-
tral gap as the infimum of the spectrum σ(−∆) of the (negative) Laplacian
on L2(X(1))0. Note also that one can take f to be either real or complex
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valued, as this will not affect the value of the spectral gap. Also by a trun-
cation and mollification argument we may allow f to range in L2(X(1))0

instead of C∞c (X(1))0 here if desired.

We have the following bounds:

Proposition 3.3.5 (Spectral gap of X(1)). We have 0 < λ1(X(1)) ≤ 1
4 .

Proof. We first establish the upper bound λ1(X(1)) ≤ 1
4 . It will suffice to

find non-zero functions f ∈ C∞c (X(1))0 whose Rayleigh quotient∫
X(1) |∇f |

2 dµ∫
X(1) |f |2 dµ

is arbitrarily close to 1/4.

We will restrict attention to smooth compactly supported functions f
supported on the cusp (3.2) for a fixed C (e.g. one can take C = 2). In
coordinates, the Raleigh quotient becomes∫∞

C

∫ 1/2
−1/2 |fx|

2 + |fy|2 dxdy∫∞
C

∫ 1/2
−1/2

|f |2
y2

dxdy

where we use subscripts to denote partial differentiation, while the mean
zero condition becomes ∫ ∞

C

∫ 1/2

−1/2

f

y2
dxdy = 0.

To build such functions, we select a large parameter R � C, and choose a
function f(x, y) = fR(y) that depends only on the y variable, is supported on

the region {C < y < 2R}, and equals y1/2 in the region {2C ≤ y ≤ R} and
is smoothly truncated in the intermediate region (assigning enough negative
mass in the region {C < y ≤ 2C} to obtain the mean zero condition). A
brief calculation shows that∫ ∞

C

∫ 1/2

−1/2

|f |2

y2
dxdy = logR+O(1)

and ∫ ∞
C

∫ 1/2

−1/2
|fx|2 + |fy|2 dxdy =

1

4
logR+O(1)

(where the implied constant can depend on C but not on R), and so the
claim follows by sending R→∞.

Now we show the lower bound λ1(X(1)) > 0. Suppose this claim
failed; then we may find a sequence of functions fn ∈ C∞c (X(1))0 with
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‖fn‖L2(X(1)) = 1 such that∫
X(1)
|∇fn|2 dµ = o(1)

where o(1) denotes a quantity that goes to zero as n→∞. We can take the
fn to be real valued.

To deal with the non-compact portion of X(1) (i.e. the cusp (3.2)) we
now use Hardy’s inequality. Observe that if f is smooth, real-valued, and
compactly supported on a cusp (3.2) for some C (we can take C = 2 as
before), then by integration by parts∫ ∞

C

∫ 1/2

−1/2

ffy
y

dxdy =
1

2

∫ ∞
C

∫ 1/2

−1/2

f2

y2
dxdy

and hence by Cauchy-Schwarz∫ ∞
C

∫ 1/2

−1/2

|f |2

y2
dxdy ≤ 4

∫ ∞
C

∫ 1/2

−1/2
|fy|2 dxdy.

Applying this to a truncated version f(x, y) = χ(y/R)fn(x, y) of fn for some
R > C and some smooth cutoff χ : R+ → [0, 1] supported on [1,+∞) that
equals one on [2,+∞), we conclude that∫ ∞
R

∫ 1/2

−1/2

|fn|2

y2
dxdy ≤ 4

∫ ∞
R

∫ 1/2

−1/2
|(fn)y|2 dxdy +O

(∫ 2R

R

|fn|2

y2
dxdy

)
.

For any ε > 0, one can use the pigeonhole principle to find an R = Oε(1)
(depending on n) such that∫ 2R

R

|fn|2

y2
dxdy ≤ ε

and thus we see that ∫ ∞
Rε

∫ 1/2

−1/2

|fn|2

y2
dxdy � ε+ o(1)

for some Rε depending only on ε. Thus, the probability measures |fn|2 dµ
form a tight sequence of measures4 in X(1). As the fn are also locally
uniformly bounded in the Sobolev space H1(X(1)), we conclude from the
Rellich compactness theorem (or the Poincaré inequality) that after passing
to a subsequence, the fn converge strongly in L2(X(1)) to a limit f , which
then has L2(X(1)) norm one, mean zero, and ∇f = 0 in a distributional
sense. But then by the Poincaré inequality, f is constant, which is absurd.

�

4A sequence of measures is tight if, for every ε > 0, there is a compact set Kε outside of
which all but finitely many of the measures only have mass at most ε.
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Remark 3.3.6. One can in fact establish after some calculation using the
theory of modular forms that λ1(X(1)) is exactly 1/4, but we will not do so
here. By modifying the above arguments, one can in fact show that −∆ on
X(1) has absolutely continuous spectrum on [1/4,+∞).

Now we move back towards the task of establishing expansion for the
Cayley graphs Cay(SL2(Fp), πp(S)). Let Γ(p) denote the kernel of the pro-
jection map πp; this is the group of matrices in SL2(Z) that are equal to 1
mod p, and is known as a principal congruence subgroup of SL2(Z). It is a
finite index normal subgroup of SL2(Z), and the quotient SL2(Z)/Γ(p) can
easily be seen to be isomorphic to SL2(Fp). In analogy with what we did for
X(1), we can then define the principal modular curve X(p) := Γ(p)\H, and
then define the Laplacian ∆ on this curve and the spectral gap λ1(X(p)).
At a qualitative level, the geometry of X(p) is similar to that of X(1), ex-
cept that instead of having just one cusp (3.2), there are now multiple cusps
(which do not necessarily go to infinity as in (3.2), but may instead go to
some other point on the boundary R ∪ {∞} of the hyperbolic plane).

Remark 3.3.7. One may think of X(p) as being formed by cutting up
a finite number of of X(1)’s and then (pseudo-)randomly sowing them to-
gether to create a tangled orbifold that is a continuous analogue of an ex-
pander graph; see [Sa2004] for more discussion of this perspective. In-
deed, one can view X(p) as a continuous analogue of the Cayley graph
Cay(P SL2(Fp), π

′
p(S)), where

S :=

{(
1 1
0 1

)
,

(
1 −1
0 1

)
,

(
1 1
0 1

)
,

(
0 −1
1 0

)}
,

and π′p is the projection onto P SL2(Fp), with each vertex of the Cayley
graph being replaced by a copy of the fundamental domain Ω of X(1), with
these domains then being glued together along their edges as prescribed by
the edges of the Cayley graph.

By a routine modification of Proposition 3.3.5, one can show that

0 < λ1(X(p)) ≤ 1

4
.

(Note also that as X(p) is a finite isometric cover of X(1), we have the
trivial bound λ1(X(p)) ≤ λ1(X(1)).) However, these arguments do not keep
λ1(X(p)) uniformly bounded away from zero. Much more is conjectured to
be true:

Conjecture 3.3.8 (Selberg’s conjecture). One has λ1(X(p)) = 1
4 for all p

(not necessarily prime).
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This conjecture remains open (though it has been verified numerically
for small values of p, in particular for all p ≤ 857 [BoSt2007]. On the other
hand, we have the following celebrated result of Selberg:

Theorem 3.3.9 (Selberg’s 3/16 theorem). [Se1965] One has λ1(X(p)) ≥
3
16 for all p (not necessarily prime).

Selberg’s argument uses a serious amount of number-theoretic machinery
(in particular, bounds for Kloosterman sums) and will not be reproduced
here. The 3

16 bound has since been improved; the best bound currently

known is 975
4096 , due to Kim and Sarnak [Ki2003] and involving even more

number-theoretic machinery (related to the Langlands conjectures); this ar-
gument will also not be discussed further here.

In [SaXu1991], [Ga2002], an argument based primarily on quasiran-
domness that used only very elementary number theory was introduced, to
obtain the following result:

Theorem 3.3.10 (Weak Selberg theorem). One has λ1(X(p)) ≥ min(λ1(X(1)), 5
36−

o(1)) for all primes p, where o(1) goes to zero as p→∞.

In particular, one has a uniform lower bound λ1(X(p)) ≥ c for some
absolute constant c > 0 (and, since one can compute that λ1(X(1)) = 1

4 ,

one can in fact take c = 5
36). Despite giving a weaker result than Theorem

3.3.9, the argument is more flexible and can be applied to other arithmetic
surfaces than X(p), for which the method of Selberg does not seem to apply;
see [SaXu1991], [Ga2002] for further discussion.

We will not quite prove Theorem 3.3.10 here, but instead establish the
following even weaker version which uses the same ideas, but in a slightly
less computation-intensive fashion (at the cost of some efficiency in the ar-
gument):

Theorem 3.3.11 (Even weaker Selberg theorem). One has λ1(X(p)) ≥
min(λ1(X(1)), 1

12 − o(1)) for all primes p.

Of course, this result is still strong enough to supply a uniform lower
bound on λ1(X(p)).

Before we prove Theorem 3.3.11 (a spectral gap in the continuous world),
let us show how it can be transferred to deduce Theorem 3.3.2 (a spectral
gap in the discrete world). Suppose for contradiction that Theorem 3.3.2
failed. Then we can find a finite symmetric generating set S for SL2(Z)
(not containing the identity) and a sequence of primes pn going to infinity
such that the one-sided expansion constant of Cay(SL2(Fpn), πpn(S)) goes to
zero. Write Gn := SL2(Fpn). Applying the weak discrete Cheeger inequality
(Exercise 2.0.6), we conclude that we can find non-empty subsets En ⊂ Gn
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of size |En| ≤ 1
2 |Gn| which are almost πpn(S)-invariant in the sense that

that |Enπpn(S)| = 1 + o(1)|En|. Since S generates SL2(Z), we conclude in
particular that

(3.3) |Enπpn(s)∆En| = o(|En|)

for any s ∈ SL2(Z) independent of n.

The idea now is to pass from this nearly-invariant discrete set En to a
nearly-invariant continuous analogue fn to which the uniform bound on the
spectral gap can be applied to obtain a contradiction. (This argument is
similar in spirit to Proposition 2.2.7.)

We turn to the details. Let R ≥ 1 be a large parameter (independent of
n) to be chosen later, and let z0 be a point on X(pn) (avoiding fixed points
of the Gn action); for sake of concretness we can take z0 to be the projection
of 2i ∈ H to X(pn). Note that Gn acts on X(pn). We consider the function
fn : X(pn)→ [0, 1] defined by the formula

fn(z) := max

(
min

(
2− dist(z, Enz0)

R
, 1

)
, 0

)
.

This function equals 1 when z is within R (in the hyperbolic metric) of a
point in the orbit Enz0, and equals 0 when z is further than 2R of this orbit;
in particular, it is compactly supported. The function is also Lipschitz with
constant O(1/R), so |∇fn| ≤ 1/R (using a weak derivative).

The curve X(pn) is a |Gn|-fold cover of X(1) and thus has volume
|Gn|µ(X(1)). Observe that fn equals 1 on the R-neighbourhood of any
point in Enz0. As these points are separated from each other by a bounded
distance (independent of n and R), we conclude that

µ({x ∈ X(pn) : fn(x) = 1})� |En|,

where the bound is uniform in R. Conversely, if γ ∈ Gn is not of the form
γ = γ1πpn(γ2) for some γ1 ∈ En and some γ2 ∈ SL2(Z) within distance 3R
from the identity, we have fn equal to 0 on the R-neighbourhood of γz0.
There are only OR(1) possible choices for γ2; since R is independent of n,
we conclude from (3.3) that all but (1 + o(1))|En| γ in Gn are of the form
described above. Since |En| ≤ |Gn|/2, we conclude that

µ({x ∈ X(pn) : fn(x) = 0})� |Gn|

if n is sufficiently large depending on R. As a consequence, if we let

f̃n := fn −
1

µ(X(pn))

∫
X(pn)

fn dµ

be the mean-free component of fn, we have the lower bound

(3.4) ‖f̃n‖L2(X(pn),µ) � |En|1/2,
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for n sufficiently large depending on R.

On the other hand, ∇f̃n = ∇fn is non-zero only at points which are
at distance between R and 2R of Enz0. Call the set of such points A. To
estimate the volume A, we partition X(pn) into |Gn| sets of the form γΩ,
where Ω is a fundamental domain of X(1) (projected onto X(pn)) and γ
ranges over Gn. Because the ball of radius 2R centred at z0 is precompact
and thus meets only OR(1) of the translated domains γΩ, we see that the
only γ for which γΩ meets A are of the form γ1πpn(γ2), where γ1 lies in En
and γ2 lies in a subset of SL2(Z) of size OR(1) that is independent of n.
From (3.3) we conclude that all but at most o(|En|) of these γ thus lie in
En, and so

µ(A) ≤ |En|+ o(|En|).

Since ∇f̃n = ∇fn = O(1/R), we conclude that

‖∇f̃n‖L2(X(pn),µ) �
1

R
|En|1/2,

for n sufficiently large depending on R. But this and (3.4) contradict the

uniform lower bound on the spectral gap λ1(X(pn)) (after regularising f̃n in
a standard fashion to make it smooth rather than merely Lipschitz), giving
the desired contradiction.

We now turn to the proof of Theorem 3.3.11. The first step is to show
that the only source of spectrum below 1/4 is provided by eigenfunctions.

Proposition 3.3.12 (Discrete spectrum below 1/4). Suppose that λ1(X(p)) <
1/4. Then there exists a non-zero φ ∈ L2(X(p)) such that −∆φ = λ1(X(p))φ
(in the distributional sense).

Note that while φ is only initially in L2(X(p)), it is a routine application
of elliptic regularity (which we omit here) to show that φ is necessarily
smooth.

Proof. For notational simplicity, we will just prove the claim in the p = 1
case, though the general case is similar. Write λ := λ1(X(p)), so that
λ < 1/4. The argument will be similar in spirit to the proof of the lower
bound λ > 0. Indeed, by definition of λ, we can find a sequence of functions
fn ∈ C∞c (X(1))0 with ‖fn‖L2(X(1)) = 1 such that

(3.5)

∫
X(1)
|∇fn|2 dµ = λ+ o(1).

As before, we can take the fn to be real valued.
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Using Hardy’s inequality as in the proof of Proposition 3.3.5, we see that
(3.6)∫ ∞
R

∫ 1/2

−1/2

|fn|2

y2
dxdy ≤ 4

∫ ∞
R

∫ 1/2

−1/2
|(fn)y|2 dxdy +O

(∫ 2R

R

|fn|2

y2
dxdy

)
for any R > C. For any ε > 0, one can use the pigeonhole principle to find
an R = Oε(1) (depending on n) such that∫ 2R

R

|fn|2

y2
dxdy ≤ ε

and thus we see that∫ ∞
Rε

∫ 1/2

−1/2

|fn|2

y2
dxdy � ε+ 4λ+ o(1)

for some Rε depending only on ε. If ε is small enough, ε + 4λ < 1 =∫
X(1) |fn|

2 dµ, and thus ∫
y≤Rε

|fn|2 dµ� 1

for all sufficiently large n. By (3.5), fn is also uniformly bounded in H1

norm. Thus by the Rellich compactness theorem, we may pass to a subse-
quence and assume that fn converges weakly in L2(X(1)) and strongly in
L2
loc to a limit φ, which is then non-zero. Also, from (3.6) we see that for

each ε,R0 and n there is an R0 ≤ R = OR0,ε(1) such that

λ

∫
y>R
|fn|2 dµ ≤

∫
y>R
|∇fn|2 dµ+O(ε)

and thus

λ

∫
y≤R
|fn|2 dµ ≥

∫
y≤R
|∇fn|2 dµ+O(ε) + o(1).

Taking limits in weak L2 (and strong L2
loc), we conclude that for some R =

Oε,R0(1) larger than R0 that

λ

∫
y≤R
|φ|2 dµ ≥

∫
y≤R
|∇φ|2 dµ+O(ε).

Sending R0 →∞ using monotone convergence, we conclude that

λ

∫
X(1)
|φ|2 dµ ≥

∫
X(1)
|∇φ|2 dµ+O(ε)

for any ε; by definition of λ, we must then have

λ

∫
X(1)
|φ|2 dµ =

∫
X(1)
|∇φ|2 dµ.
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Perturbing φ in some test function direction g ∈ C∞c (X1) of mean zero, and
using the definition of λ, we conclude that

λ

∫
X(1)
〈φ, g〉 dµ =

∫
X(1)
〈∇φ,∇g〉 dµ

for all such g. The mean zero condition on g can be removed since both
sides of this equation vanish when g is constant. By duality we thus see
that −∆φ = λφ in the sense of distributions, as required. �

Exercise 3.3.4. Establish the above proposition for general p.

Exercise 3.3.5. Show that for any λ < 1/4, the spectrum of −∆ in [0, λ]
on X(p) is finite (and in particular consists only of eigenvalues), with each
eigenvalue having finite multiplicity. (For this exercise you may use without
proof the fact that −∆ is essentially self-adjoint, see Section 10.)

We will also need a variant of the above proposition:

Lemma 3.3.13 (Eigenfunctions do not concentrate in cusps). Let λ0 < 1/4.
Then there is a compact subset F of X(1), such that for any p and any
eigenfunction −∆φ = λφ on X(p) with some λ < λ0, one has∫

η−1
p (F )

|φ(x)|2 dµ(x)�λ0

∫
X(p)
|φ(x)|2 dµ(x)

where the implied constant is independent of p, λ, and φ, and ηp : X(p) →
X(1) is the covering map.

The lemma is basically proved by applying Hardy’s inequality to each
cusp of X(p); see the paper of Gamburd for details.

Now we can start using quasirandomness. Let V ⊂ L2(X(p))0 be the
space of all eigenfunctions of −∆ of eigenvalue λ:

V := {φ ∈ L2(X(p))0 : −∆φ = λφ}.
By the above proposition, this is a non-trivial Hilbert space. From Exercise
3.3.5, V is finite-dimensional (though we do not really need to know this
fact yet in the argument that follows, as it will be a consequence of the
computations). Since SL2(Fp) acts isometrically on X(p), it also acts on V .
If φ is a SL2(Fp)-invariant vector in V , then it descends to a function on
L2(X(1))0, which is impossible if λ < λ1(X(1)). Applying the Frobenius
lemma (Lemma 3.0.5), we conclude

Lemma 3.3.14 (Quasirandomness). If λ < λ1(X(1)), then V has dimen-

sion at least p−1
2 .

To complement this quasirandomness to get expansion, we need a flat-
tening property, as in Proposition 3.1.3. In the discrete world, we applied a
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flattening property to the distribution µ∗m of a long discrete random walk.
The direct analogue of such a distribution would be a heat kernel et∆ of
the Laplacian ∆, and this is what we shall use here. (It turns out that the
heat kernel is not quite the most efficient object to analyse here; see Remark
3.3.18 below.)

We first recall the formula for the heat kernel on the hyperbolic plane
H (which can be found in many places, such as [Ch1984] or [Te1985]):

Exercise 3.3.6. Show that the heat operator et∆ on test functions f in H
is given by the formula

et∆f(x) =

∫
H
Kt(d(x, y))f(y) dµ(y)

where Kt is the kernel

Kt(ρ) :=

√
2

(4πt)3/2
e−t/4

∫ ∞
ρ

se−s
2/4t

(cosh s− cosh ρ)1/2
ds.

(Hint: There are two main computations. One is to show that Kt(ρ) obeys
the heat equation, which in half-cylindrical coordinates means that one has
to verify that

(3.7)
∂

∂t
Kt(ρ) =

(
∂2

∂ρ2
+

1

sinh ρ

∂

∂ρ

)
Kt(ρ).

The other is to show thatKt(ρ) resembles the Euclidean heat kernel 1
4πte

−ρ2/4t

for small t. There are several other ways to derive this formula in terms of
formulae for other operators (e.g. the wave propagator); see for instance
[Te1985] for some discussion.)

For our purposes, we only need a crude upper bound on the heat kernel:

Exercise 3.3.7. With the notation of the preceding exercise, show that

Kt(ρ)� (t+ ρ)O(1)e−t/4e−ρ/2e−ρ
2/4t.

when t ≥ 1 and ρ ≥ 0.

In our applications, the polynomial factors (t+ ρ)O(1) will be negligible;
only the exponential factors will be of importance. Note that if one inte-
grates the above estimate against the measure dµ = sinh ρdρdθ, one sees
that

(3.8)

∫
H
Kt dµ�

∫ ∞
0

(t+ ρ)O(1)e−t/4e+ρ/2e−ρ
2/4tdρ.

The right-hand side evaluates to O(tO(1)). On the other hand, as the heat
kernel is a probability measure, one has

∫
HKt dµ = 1. Thus, up to polyno-

mial factors, the above estimate is quite tight.
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Remark 3.3.15. From Exercise 3.3.7, we see that the probability measure
Kt(ρ) sinh ρdρdθ concentrates around the region ρ = t + O(

√
t); thus on

the hyperbolic plane, Brownian motion moves “ballistically” away from its
starting point at a unit speed, in contrast to the situation in Euclidean
geometry, where after time t a Brownian motion is only expected to move
by a distance O(

√
t). One can see this phenomenon also from the heat

equation (3.7), which when expressed in terms of the probability density
u(ρ) := Kt(ρ) sinh ρ becomes a Fokker-Planck equation

∂

∂t
u(ρ) =

∂2

∂ρ2
u(ρ)− ∂

∂ρ

(
1

tanh ρ
u

)
(ρ)

with unit diffusion and drift speed 1
tanh ρ . Since 1

tanh ρ rapidly approaches

1 when ρ becomes large, we thus expect u to concentrate in the region
ρ = t+O(

√
t), as is indeed the case.

We let t ≥ 1 be a parameter to optimise in later. The heat operator
et∆ on H descends to a heat operator on the quotient X(p), defined by the
formula

et∆f(x) =

∫
X(p)

∑
z∈Γ(p)y

Kt(d(x, z))f(y) dµ(y)

for f ∈ Cc(X(p)); note that the sum
∑

z∈Γ(p)yKt(d(x, z)) is Γ(p)-invariant,

and so makes sense for x ∈ X(p) and not just for x ∈ H. When applied to an
eigenfunction φ ∈ V , one has et∆φ = e−tλφ; in particular, et∆ preserves V ,
and thus also preserves the orthogonal complement of V . As et∆ is positive
semi-definite, it therefore splits as the sum of e−tλPV and another positive
semi-definite operator, where PV is the orthogonal projection to V . Note
that e−tλPV is an integral operator with kernel5

e−tλ
dim(V )∑
i=1

φi(x)φi(y)

where φ1, . . . , φdim(V ) is an orthonormal basis of V . Since positive semi-
definite integral operators (with continuous kernel) are non-negative on the
diagonal, we conclude the pointwise inequality

e−tλ
dim(V )∑
i=1

|φi(x)|2 ≤
∑
γ∈Γ(p)

Kt(d(x, γx))

for all x ∈ X(p).

This will be our starting point to get a lower bound on λ. But first we
must deal with the other quantities φi, Kt in this expression. A simple way

5Here we use the fact that V is finite dimensional, but if one does not want to use this fact
yet, one can work instead with a finite-dimensional subspace of V in the argument that follows.
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to proceed here is to integrate out in X(p) to exploit the L2 normalisation
of the φi:

e−tλ dim(V ) ≤
∫
X(p)

∑
γ∈Γ(p)

Kt(d(x, γx)) dµ(x).

However, this turns out to be a little unfavourable because the integrand on
the right-hand side does not behave well enough at cusps. However, if one
uses Lemma 3.3.13 first (assuming that λ ≤ 1/12), and integrates over the
resulting region η−1

p (F ), we can avoid the cusps:

e−tλ dim(V )�
∫
η−1
p (F )

∑
γ∈Γ(p)

Kt(d(x, γx)) dµ(x).

Because the sum here is SL2(Fp)-invariant, we can descend from X(p) to
X(1):

e−tλ dim(V )� |SL2(Fp)|
∫
F

∑
γ∈Γ(p)

Kt(d(x, γx)) dµ(x).

We now insert the bound in Exercise 3.3.7, as well as the bound | SL2(Fp)| �
p3:

e−tλ dim(V )� p3

∫
F

∑
γ∈Γ(p)

(t+d(x, γx))O(1)e−t/4e−d(x,γx)/2e−d(x,γx)2/4t dµ(x).

Because F is compact, we can get a good bound on d(x, γx):

Exercise 3.3.8.

(i) For any γ ∈ SL2(R), show that d(i, γi) = 2 log ‖γ‖ + O(1), where

‖γ‖ := (a2 + b2 + c2 + d2)1/2 is the Frobenius norm of the matrix

γ =:

(
a b
c d

)
.

(ii) More generally, if F is a compact subset ofX(1), show that d(x, γx) ≤
CF log ‖γ‖+ CF for some constant CF depending only on F .

Inserting these bounds, we obtain

e−tλ dim(V )� p3
∑
γ∈Γ(p)

(t+ log ‖γ‖)O(1)e−t/4e− log ‖γ‖e−(log ‖γ‖+O(1))2/t.

Decomposing according to the integer part R of log γ +O(1), we thus have

(3.9) e−tλ dim(V )� p3
∞∑
R=1

(t+R)O(1)e−t/4e−Re−R
2/tNp(e

R+O(1))

where Np(T ) is the counting function

Np(T ) := |{γ ∈ Γ(p) : ‖γ‖ ≤ T}.
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So one is left with the purely number-theoretic task of estimating Np(T ).
This is basically the number of points of Γ(p)i in the ball of radius 2 log T
in H. From the half-cylinder model, we see that the measure of this ball
is O(e2 log T ) = O(T 2). On the other hand, Γ(p) has index | SL2(Fp)| ∼ p3

in Γ(1), which has bounded covolume in H. We thus heuristically expect
Np(T ) to be O(T 2/p3). If this were the truth, then the right-hand side of

(3.9) would be O(tO(1)) (cf. the evaluation of (3.8)), which when combined
with quasirandomness (Lemma 3.3.14) would give a lower bound of λ, that
would be particularly strong when t was small.

The key is then the following “flattening lemma”, that shows that Np(T )
is indeed roughly of the order of O(T 2/p3) when T is large, and is the main
number-theoretic input to the argument:

Lemma 3.3.16 (Flattening lemma). For any ε > 0, one has

Np(T )�ε
T 2+ε

p3
+
T 1+ε

p
+ T ε.

Proof. Using the definition of Γ(p), we are basically counting the number
of integer solutions (a, b, c, d) ∈ Z4 to the equation

ad− bc = 1

subject to the congruences

a = d = 1 mod p; b = c = 0 mod p

and the bounds

a, b, c, d = O(T ).

Since b, c are both divisible by p, we see also that ad = 1 mod p2. Similarly,
as a − 1 and d − 1 are divisible by p, we have (a − 1)(d − 1) = 0 mod p2.
Subtracting, we conclude that

a+ d = 2 mod p2.

Now we proceed as follows. The number of integers a = 1 mod p with
a = O(T ) isO(Tp+1). For each such a, the number of d with a+d = 2 mod p2

and d = O(T ) is O( T
p2

+ 1). For each fixed a and d, the expression ad − 1

is of size O(T 2); by the divisor bound (see [Ta2009, §1.6]), there are thus
Oε(T

ε) ways to factor ad− 1 into bc. Thus, we obtain a final bound of

Np(T )�ε

(
T

p
+ 1

)(
T

p2
+ 1

)
T ε

giving the claim. �
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Remark 3.3.17. One can obtain improved bounds to Np(T ) for some
ranges of T (particularly when T ranges between p and p2) by using more
advanced tools, such as bounds on Kloosterman sums. Unfortunately, such
improvements do not actually improve the final constants in this argument.
(Kloosterman sums do however play a key role in the proof of Theorem 3.3.9,
which proceeds by a different, and more highly arithmetic, argument.)

A routine calculation then finishes off the proof of Theorem 3.3.11:

Exercise 3.3.9. Using the above lemma, show that the right-hand side of
(3.9) is

(3.10) �ε e
εt(1 + p3e−t/4)

for any ε > 0. Optimising this in t and using Lemma 3.3.14, establish a
contradiction whenever λ < min( 1

12 − ε, λ1(X(1))) and p is sufficiently large
depending on ε, thus giving Theorem 3.3.11.

Remark 3.3.18. An inspection of the above argument shows that the
p3e−t/4 term in (3.10) is the main obstacle to improving the 1

12 constant.
This term ultimately can be “blamed” for the relatively large value of the
heat kernel Kt(ρ) at the origin. To improve this, one can observe that the
main features of the heat kernel Kt(ρ) that were needed for the argument
were that it was positive definite, and had an explicit effect on eigenfunctions
φ. It turns out that there are several other kernels with these properties, and
by selecting a kernel with less concentration at the identity, one can obtain
a better result. In particular, an efficient choice of kernel turns out to be the
convolution of a ball of radius t with itself. By performing some additional
calculations in hyperbolic geometry (in particular, using the Selberg/Harish-
Chandra theory of spherical functions) one can use this kernel to improve
the 1/12 bound given here to 5/36; see [Ga2002] for details. Unfortunately,
the fraction 5/36 here appears to be the limit of this particular method.



Chapter 4

The Balog-Szemerédi-
Gowers lemma, and
the Bourgain-Gamburd
expansion machine

We have now seen two ways to construct expander Cayley graphs Cay(G,S).
The first, discussed in Chapter 2, is to use Cayley graphs that are projections
of an infinite Cayley graph on a group with Kazhdan’s property (T). The
second, discussed in Chapter 3, is to combine a quasirandomness property
of the group G with a flattening hypothesis for the random walk.

We now pursue the second approach more thoroughly. The main diffi-
culty here is to figure out how to ensure flattening of the random walk, as
it is then an easy matter to use quasirandomness to show that the random
walk becomes mixing soon after it becomes flat. In the case of Selberg’s
theorem, we achieved this through an explicit formula for the heat kernel
on the hyperbolic plane (which is a proxy for the random walk). However,
in most situations such an explicit formula is not available, and one must
develop some other tool for forcing flattening, and specifically an estimate
of the form

(4.1) ‖µ∗n‖`2(G) � |G|−1/2+ε

for some n = O(log |G|), where µ is the uniform probability measure on the
generating set S.

87
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In [BoGa2008] Bourgain and Gamburd introduced a general method
for achieving this goal. The intuition here is that the main obstruction that
prevents a random walk from spreading out to become flat over the entire
group G is if the random walk gets trapped in some proper subgroup H of G
(or perhaps in some coset xH of such a subgroup), so that µ∗n(xH) remains
large for some moderately large n. Note that

µ∗2n(H) ≥ µ∗n(Hx−1)µ∗n(xH) = µ∗n(xH)2,

since µ∗2n = µ∗n ∗ µ∗n, H = (Hx−1) · (xH), and µ∗n is symmetric. By
iterating this observation, we seethat if µ∗n(xH) is too large (e.g. of size

|G|−o(1) for some n comparable to log |G|), then it is not possible for the
random walk µ∗n to converge to the uniform distribution in time O(log |G|),
and so expansion does not occur.

A potentially more general obstruction of this type would be if the ran-
dom walk gets trapped in (a coset of) an approximate group H. For any
K ≥ 1, we define a K-approximate group to be a subset H of a group G
which is symmetric, contains the identity, and is such that H · H can be
covered by at most K left-translates (or equivalently, right-translates) of H.
Such approximate groups were studied extensively in last quarter’s course.
A similar argument to the one given previously shows (roughly speaking)
that expansion cannot occur if µ∗n(xH) is too large for some coset xH of
an approximate group.

It turns out that this latter observation has a converse: if a measure
does not concentrate in cosets of approximate groups, then some flattening
occurs. More precisely, one has the following combinatorial lemma:

Lemma 4.0.19 (Weighted Balog-Szemerédi-Gowers lemma). Let G be a
group, let ν be a finitely supported probability measure on G which is sym-
metric (thus ν(g) = ν(g−1) for all g ∈ G), and let K ≥ 1. Then one of the
following statements hold:

(i) (Flattening) One has ‖ν ∗ ν‖`2(G) ≤ 1
K ‖ν‖`2(G).

(ii) (Concentration in an approximate group) There exists an O(KO(1))-

approximate group H in G with |H| � KO(1)/‖ν‖2`2(G) and an ele-

ment x ∈ G such that ν(xH)� K−O(1).

This lemma is a variant of the more well-known Balog-Szemerédi-Gowers
lemma [BaSz1994], [Go1998] in additive combinatorics; the version in
[Go1998] roughly speaking corresponds to the case when µ is the uniform
distribution on some set A), and is a polynomially quantitative version of an
earlier lemma of Balog and Szemerédi [BaSz1994]. We will prove it below
the fold.
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The lemma is particularly useful when the group G in question enjoys
a product theorem, which roughly speaking says that the only medium-sized
approximate subgroups of G are trapped inside genuine proper subgroups
of G (or, contrapositively, medium-sized sets that generate the entire group
G cannot be approximate groups). The fact that some finite groups (and
specifically, the bounded rank finite simple groups of Lie type) enjoy product
theorems is a non-trivial fact, and will be discussed in later chapters. For
now, we simply observe that the presence of the product theorem, together
with quasirandomness and a non-concentration hypothesis, can be used to
demonstrate expansion:

Theorem 4.0.20 (Bourgain-Gamburd expansion machine). Suppose that
G is a finite group, that S ⊆ G is a symmetric set of k generators, and that
there are constants 0 < κ < 1 < Λ with the following properties.

(1) (Quasirandomness). The smallest dimension of a nontrivial repre-
sentation ρ : G→ GLd(C) of G is at least |G|κ;

(2) (Product theorem). For all δ > 0 there is some δ′ = δ′(δ) > 0 such

that the following is true. If H ⊆ G is a |G|δ′-approximate subgroup
with |G|δ ≤ |H| ≤ |G|1−δ then H generates a proper subgroup of G;

(3) (Non-concentration estimate). There is some even number n ≤
Λ log |G| such that

sup
H<G

µ∗n(H) < |G|−κ,

where the supremum is over all proper subgroups H < G.

Then Cay(G,S) is a two-sided ε-expander for some ε > 0 depending only on
k, κ,Λ, and the function δ′(·) (and this constant ε is in principle computable
in terms of these constants).

This criterion for expansion is implicitly contained in [BoGa2008],
where it was used to establish the expansion of various Cayley graphs in
SL2(Fp) for prime p. This criterion has since been applied (or modified) to
obtain expansion results in many other groups, as will be discussed in later
chapters.

4.1. The Balog-Szemerédi-Gowers lemma

The Balog-Szemerédi-Gowers lemma (Lemma 4.0.19) is ostensibly a state-
ment about group structure, but the main tool in its proof is a remarkable
graph-theoretic lemma (also known as the Balog-Szemerédi-Gowers lemma)
that allows one to upgrade a “statistical” structure (a structure which is
only valid a small fraction of the time, say 1% of the time) to a “complete”
structure (one which is valid 100% of the time), by shrinking the size of
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the structure slightly (and in particular, with losses of polynomial type, as
opposed to exponential or worse). This is in contrast to other structure-
improving results (such as Ramsey’s theorem [Ra1930], Szemerédi’s the-
orem [Sz1975], or Freiman’s theorem [Fr1973]), which are qualitatively
similar in spirit, but have much worse quantitative bounds (though there is
some hope in the case of Freiman’s theorem to only lose polynomial bounds
with some improvement of existing arguments; see [Sa2013]).

As we shall see later, the property of ‖ν∗ν‖`2(G) being large is a statistical
assertion about ν (it asserts that ν ∗ ν collides with itself somewhat often),
whereas approximate groups H represent a more complete sort of structure
(all products of H ·H are trapped in a small set, whereas only many of the
products in ν ∗ ν are so constrained). The graph-theoretic Balog-Szemerédi
lemma is the key to moving from the former type of structure to the latter
with only polynomial losses.

We need some notation. Define a bipartite graph G = G(A,B,E) to be
a graph whose vertex set V := A∪B is partitioned into two non-empty sets
A,B, and the edge set E consists only of edges between A and B. If a finite
bipartite graph G = G(A,B,E) is dense in the sense that its edge density
|E|/|A||B| is large, then for many vertices a ∈ A and b ∈ B, a and b are
connected by a path of length one (i.e. an edge). It is thus intuitive that
many pairs of vertices a ∈ A and a′ ∈ A will be connected by many paths
of length two. Perhaps surprisingly, one can upgrade “many pairs” here to
“almost all pairs”, provided that one is willing to shrink the set A slightly.
More precisely, one has

Lemma 4.1.1 (Balog-Szemerédi-Gowers lemma: paths of length two). Let
G(A,B,E) be a finite bipartite graph with |E| ≥ |A||B|/K. Let ε > 0. Then

there exists a subset A′ of A with |A′| ≥ |A|√
2K

such that at least (1− ε)|A′|2

of the pairs (a, a′) ∈ A′ × A′ are such that a, a′ are connected by at least
ε

2K2 |B| paths of length two (i.e. there exists at least ε
2K2 |B| vertices b ∈ B

such that {a, b}, {a′, b} both lie in E).

Remark 4.1.2. It is not possible to remove the ε entirely from this lemma;
see [TaVu2006, Exercise 6.4.2] for a counterexample (involving Hamming
balls).

Proof. The idea here is to use a probabilistic construction, picking A′ to
be a neighbourhood of a randomly selected element b of B. The rationale
here is that if a pair a, a′ of vertices in A are not connected by many paths
of length two, then they are unlikely to lie in the same neighbourhood, and
so are unlikely to “wreck” the construction.

We turn to the details. Let b ∈ B be chosen uniformly at random, and
let A′ := {a ∈ A : (a, b) ∈ E} be the neighbourhood of b. Observe that the
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expected size of A′ is

E|A′| = 1

|B|
|E| ≥ |A|

K
.

By Cauchy-Schwarz, we conclude in particular that

(4.2) E|A′|2 ≥ |A|
2

K2
.

Now, call a pair (a, a′) bad if it is connected by fewer than ε|B|
2K2 paths

of length two, and let N be the number of bad pairs (a, a′) in A′ × A′. We
consider the quantity EN . Observe that if (a, a′) is a bad pair in A × A,

then there are at most ε|B|
2K2 values of b for which a and a′ will both lie in

A′, and so this bad pair contributes at most ε
2K2 to the expectation. Since

there are at most |A|2 bad pairs, we conclude that

EN ≤ ε|A|2

2K2
.

Combining this with (4.2), we see that

E

(
|A′|2 − N

ε
− |A|

2

2K2

)
≥ 0.

In particular, there exists a choice of b for which the expression on the
left-hand side is non-negative. This implies that

N ≤ ε|A′|2

and

|A′|2 ≥ |A|
2

2K2

and the claim follows. �

Given that almost all pairs a, a′ in A′ are joined by many paths of length
two, it is then plausible that almost all pairs a ∈ A′, b ∈ B′ are joined by
many paths of length three, for some large subset B′ of B. Remarkably, one
can now upgrade “almost all” pairs here to all pairs:

Lemma 4.1.3 (Balog-Szemerédi-Gowers lemma: paths of length three).
Let G(A,B,E) be a finite bipartite graph with |E| ≥ |A||B|/K. Then there

exists subsets A′, B′ of A,B respectively with |A′| � K−O(1)|A| and |B′| �
K−O(1)|B|, such that for every a ∈ A and b ∈ B, a and b are joined by

� K−O(1)|A||B| paths of length three.

Remark 4.1.4. A lemma similar to this was first established in [BaSz1994],
as a consequence of the Szemereédi regularity lemma [Sz1978]. However,

as a consequence of using that lemma, the polynomial bounds K−O(1) in
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the above lemma had to be replaced by much worse bounds (of tower-
exponential type in K), which turns out to be far too weak for the purposes
of establishing expansion.

Proof. The idea is to first prune a few “unpopular” vertices from A and B
and then apply the preceding lemma.

Let A1 be the vertices in A of degree at least |B|/2K, and let E1 be the
edges connecting A1 and B. Note that the vertices in A\A1 are connected to
a total of at most |A||B|/2K edges, and so |E1| ≥ |A||B|/2K ≥ |A1||B|/2K.
Since |E1| ≤ |A1||B|, we conclude in particular that |A1| ≥ |A|/2K.

Let ε > 0 be a sufficiently small quantity (depending on K) to be chosen
later. Applying Lemma 4.1.1, one can find a subset A2 of A1 of cardinality
|A2| � |A1|/K � |A|/K2 such that at most ε|A2|2 of the pairs (a, a′) ∈
A2×A2 are bad in the sense that they are not connected by� ε

K2 |B| paths
of length two.

Let A′ be those vertices a in A2 for which there are at most
√
ε|A2|

elements a′ of A2 for which (a, a′) is bad. By Markov’s inequality, A′ consists
of all but at most

√
ε|A2| elements of A2.

Let E2 be the edges connecting A2 with B. Since each vertex in A2 has
degree at least |B|/2K, one has

|E2| ≥ |A2||B|/2K � |A||B|/K3.

We may thus find a subset B′ of B of cardinality |B′| � |B|/K3 such that
each b ∈ B′ is adjacent to � |A|/K3 elements of A2.

Now let a ∈ A′ and b ∈ B′. We know that b is adjacent to � |A|/K3

elements a′ of A2, and that at most
√
ε|A2| of these elements are such that

(a, a′) is bad. If we choose ε to be a sufficiently small multiple of 1/K6, we
conclude that there are� |A|/K3 elements a′ which are adjacent to b and for
which (a, a′) is not bad. One thus has � (|A|/K3)(ε/K2)|B| � |A||B|/K11

paths of length three connecting a to b, and the claim follows. �

The exponents in K here can be improved slightly, but we will not
attempt to obtain the optimal numerology here.

Remark 4.1.5. The above results are analogous to a phenomenon in ad-
ditive combinatorics, namely that a “1%-structured” set (such as a small
density subset of a group) can often be upgraded to a “99%-structured” set
(such as the complement of a small density subset of a group) by applying
a single “convolution” or “sumset” operation, and then upgraded further to
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a “100%-structured” set (such as a genuine group) by applying a further1

convolution or sumset operation.

Exercise 4.1.1 (Weighted Balog-Szemerédi-Gowers theorem). Let (X,µ)
and (Y, ν) be probability spaces, and let E ⊂ X×Y have measure µ×ν(E) ≥
1/K for some K ≥ 1.

(i) Show that for any ε > 0, there exists a subset X ′ of X of measure
µ(X ′) ≥ 1√

2K
such that

µ× µ

({
(x, x′) ∈ X ′ ×X ′ :

∫
Y

1E(x, y)1E(x′, y) dν(y) <
ε

2K2

})
≤ εµ(X ′)2.

(ii) Show that there exists subsets X ′, Y ′ of X,Y of measure µ(X ′)�
K−O(1) and ν(Y ′)� K−O(1) such that∫
X

∫
Y

1E(x, y′)1E(x′, y′)1E(x′, y) dµ(x′)dν(y′)� K−O(1)

for all x ∈ X ′ and y ∈ Y ′.

Exercise 4.1.2 (99% Balog-Szemerédi theorem). Let G(A,B,E) be a finite
bipartite graph such that |E| ≥ (1− ε)|A||B|.

(i) Show that there exists a subset A′ of A of size |A′| ≥ (1−O(
√
ε))|A|

such that for every a, a′ ∈ A′, a and a′ are connected by at least
(1 − O(

√
ε))|B| paths of length 2. (Hint: select A′ to be those

vertices in A′ that are connected to “almost all” the vertices in B.)

(ii) Show that there also exists a subset B′ of B of size |B′| ≥ (1 −
O(
√
ε))|B| such that for every a ∈ A′ and b ∈ B′, a and b are

connected by at least (1−O(
√
ε))|A||B| paths of length 3.

We now apply the graph-theoretic lemma to the group context. The
main idea here is to show that various sets (e.g. product sets A ·B) are small
by showing that they are in the high-multiplicity region of some convolution
(e.g. 1A1 ∗ . . . ∗ 1Ak), or equivalently that elements g of such sets have
many representations as a product g = a1 . . . ak with a1 ∈ A1, . . . , ak ∈ Ak.
One can then use Markov’s inequality and the trivial identity ‖1A1 ∗ . . . ∗
1Ak‖`1(G) = |A1| . . . |Ak| to get usable size bounds on such sets.

1This is basically why, for instance, it is known that almost all even natural numbers are the

sum of two primes, and all but finitely many odd natural numbers are the sum of three primes;
but it is not known whether all but finitely many even natural numbers are the sum of two primes.
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Corollary 4.1.6 (Balog-Szemerédi-Gowers lemma, product set form). let
A,B be finite non-empty subsets of a group G = (G, ·), and suppose that

‖1A ∗ 1B‖`2(G) ≥ |A|3/4|B|3/4/K

for some K ≥ 1. (This hypothesis should be compared with the upper bound

‖1A ∗ 1B‖`2(G) ≤ ‖1A‖`4/3(G)‖1B‖`4/3(G) = |A|3/4|B|3/4

arising from Young’s inequality.) Then there exists subsets A′, B′ of A,B

respectively with |A′| � K−O(1)|A| and |B′| � K−O(1)|B| with |A′ · B′| �
KO(1)|A|1/2|B|1/2 and |A′ · (A′)−1| � KO(1)|A|.

The quantity ‖1A ∗ 1B‖2`2(G) (or equivalently, the number of solutions to

the equation ab = a′b′ with a, a′ ∈ A and b, b′ ∈ B) is also known as the
multiplicative energy of A and B, and is sometimes denoted E(A,B) in the
literature.

Proof. By hypothesis, we have∑
(a,b)∈A×B

1A ∗ 1B(ab) = ‖1A ∗ 1B‖2`2(G) ≥ |A|
3/2|B|3/2/K2.

Since ∑
(a,b)∈A×B:1A∗1B(ab)≤|A|1/2|B|1/2/2K2

1A ∗ 1B(ab) ≤ |A|3/2|B|3/2/2K2,

we conclude that ∑
(a,b)∈A×B:1A∗1B(ab)>|A|1/2|B|1/2/2K2

1A ∗ 1B(ab) ≥ |A|3/2|B|3/2/2K2.

Since, by Cauchy-Schwarz (or Young’s inequality), we have 1A ∗ 1B(ab) ≤
|A|1/2|B|1/2, we conclude that there is a set E ⊂ A×B with |E| ≥ |A||B|/2K2

such that

1A ∗ 1B(ab) > |A|1/2|B|1/2/2K2

for all (a, b) ∈ E.

By slight abuse of notation (arising from the fact that A, B are not
necessarily disjoint, and that E is a set of ordered pairs rather than un-
ordered pairs), we can view the triplet (A,B,E) as a bipartite graph. Ap-
plying Lemma 4.1.3, we can find subsets A′, B′ of A,B respectively with
|A′| � K−O(1)|A| and |B′| � K−O(1)|B| such that for all a ∈ A′ and

b ∈ B′, one can find � K−O(1)|A||B| elements a′ ∈ A, b′ ∈ B such that
(a, b′), (a′, b′), (a′, b) ∈ E. In particular, we see that

(4.3)
∑
a′∈G

∑
b′∈G

1A ∗ 1B(ab′)1A ∗ 1B(a′b′)1A ∗ 1B(a′b)� K−O(1)|A|5/2|B|5/2.



4.1. The Balog-Szemerédi-Gowers lemma 95

Observe that 1A ∗ 1B(a′b′) = 1B−1 ∗ 1A−1((b′)−1(a′)−1). Using the identity
(ab′)((b′)−1(a′)−1)(a′b) = ab, we note that triples (ab′, (b′)−1(a′)−1, a′b) for
a′, b′ ∈ G are precisely those triples (g1, g2, g3) ∈ G × G with g1g2g3 = ab.
Thus the left-hand side of (4.3) is equal to F (ab), where

F := 1A ∗ 1B ∗ 1B−1 ∗ 1A−1 ∗ 1A ∗ 1B.

But since
‖F‖`1 = |A||B||B−1||A−1||A||B| = |A|3|B|3,

we see from Markov’s inequality that there are at most O(KO(1)|A|1/2|B|1/2)

possible values for ab, which gives the bound |A′ ·B′| � KO(1)|A|1/2|B|1/2.

The second bound |A′ ·(A′)−1| � KO(1)|A| can be proven similarly to the

first (noting that any a, a′ ∈ A′ are connected by � K−O(1)|A|2|B|2 paths
of length six), but can also from the former bound as follows. Observe that
any element a(a′)−1 ∈ A′ · (A′)−1 has at least |B′| representations of the
form a(a′)−1 = (ab)(a′b)−1 with b ∈ B′, and hence ab, a′b ∈ A′ ·B′, thus

1A′B′ ∗ 1(A′B′)−1 ≥ |B′| � K−O(1)|B|

on A′(A′)−1. On the other hand, the left-hand side has an `1(G) norm of

|A′B′||(A′B′)−1| � KO(1)|A||B|, and the bound |A′ · (A′)−1| � KO(1)|A|
then follows from Markov’s inequality. �

Exercise 4.1.3. In the converse direction, show that if A,B are non-empty
finite subsets of G with |AB| ≤ K|A|1/2|B|1/2, then ‖1A ∗ 1B‖`2(G) ≥
|A|3/4|B|3/4/K1/2.

Exercise 4.1.4. If A,B,C are three non-empty finite subsets of G, establish

the Ruzsa triangle inequality |A · C−1| ≤ |A·B−1||B·C−1|
|B| . (Hint: mimic the

final part of the proof of Corollary 4.1.6.)

We now give a variant of this corollary involving approximate groups.

Lemma 4.1.7 (Balog-Szemerédi-Gowers lemma, approximate group form).
Let A be a finite symmetric subset of a group G = (G, ·), and suppose that

‖1A ∗ 1A‖`2(G) ≥ |A|3/2/K

for some K ≥ 1. Then there exists a KO(1)-approximate group H with
|H| � KO(1)|A| such that |A ∩ gH| � K−O(1)|A| for some g ∈ H.

Proof. By Corollary 4.1.6, we may find a subset A′ ⊂ A with |A′| �
K−O(1)|A| such that

(4.4) |A′(A′)−1| � KO(1)|A|.
By Exercise 4.1.3, this implies that

‖1A′ ∗ 1(A′)−1‖2`2(G) � K−O(1)|A|3.
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Observe that the left-hand side is equal to

1A′ ∗ 1(A′)−1 ∗ 1A′ ∗ 1(A′)−1(1)

= 1(A′)−1 ∗ 1A′ ∗ 1(A′)−1 ∗ 1A′(1)

= ‖1(A′)−1 ∗ 1A′‖2`2(G).

We conclude that ∑
s∈G

(1(A′)−1 ∗ 1A′(s))
2 � K−O(1)|A|3.

On the other hand, we have∑
s∈G

1(A′)−1 ∗ 1A′(s) = |A′||A′| ≤ |A|2.

As a consequence, we see that if we set

S := {s ∈ G : 1(A′)−1 ∗ 1A′(s) ≥ C−1K−C |A|}

for some sufficiently large absolute constant C, then∑
s∈G\S

(1(A′)−1 ∗ 1A′(s))
2 ≤ C−1K−C |A|3,

and thus (for C large enough)∑
s∈S

(1(A′)−1 ∗ 1A′(s))
2 � K−O(1)|A|3.

Since 1(A′)−1 ∗ 1A′(s) ≤ |A′| ≤ |A|, we conclude that

|S| � K−O(1)|A|.

Also, S is clearly symmetric and contains the origin.

Now let us consider an element g = a0s1 . . . s5b
−1
6 of the product (A′)S5(A′)−1.

By construction of S, we can write each si as a product b−1
i ai with ai, bi ∈ A′

in at least C−1K−C |A| ways. Doing so for each i = 1, . . . , 5 gives rise to a
factorisation

g = g1 . . . g6

where gi := ai−1b
−1
i ∈ A′(A′)−1; as the g1, . . . , g6 uniquely determine the

ai, bi (for fixed a0, s1, . . . , s5, b6), we conclude that each element g of (A′)S5(A′)−1

has at least � K−O(1)|A|5 such factorisations. But by (4.4), there are at

mostO(KO(1)|A|6) such tuples g1, . . . , g6, and so there are at mostO(KO(1)|A|)
possible values for g, thus

(4.5) |(A′)S5(A′)−1| � KO(1)|A|.

In particular,

|S5| � KO(1)|S|.
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By the Ruzsa covering lemma (see Exercise 4.1.5), this implies that S4 is

covered by O(KO(1)) left-translates of S2, and so H := S2 is a KO(1)-
approximate group. Finally, from (4.5) one has

|A′H| � KO(1)|A|
and thus by Exercise 4.1.3

‖1A′ ∗ 1H‖`2(G) � K−O(1)|A|3/2.

In particular, since the support of 1A′ ∗ 1H has size O(KO(1)|A|), one has

1A′ ∗ 1H(g)� K−O(1)|A|
for some g ∈ G, or equivalently that

|A′ ∩Hg| � K−O(1)|A|.
Increasing A′ to A and taking inverses, we conclude that |gH ∩ A| �
K−O(1)|A|, and the claim follows. �

Exercise 4.1.5 (Ruzsa covering lemma). Let A,B be finite non-empty sub-

sets of a group G. Show that A can be covered by at most |AB||B| left-translates

of BB−1. (Hint: consider a maximal disjoint collection of translates aB of
B with a ∈ A.)

Exercise 4.1.6 (Converse to Balog-Szemerédi-Gowers). Let A be a finite
symmetric subset of a group G = (G, ·), and suppose there exists a K-
approximate group H with |H| ≤ K|A| such that |A ∩ gH| ≥ |A|/K for
some g ∈ H. Show that

‖1A ∗ 1A‖`2(G) ≥ K−3|A|3/2.

Exercise 4.1.7. Let A,B be finite non-empty subsets of a group G, and
suppose that ‖1A ∗ 1B‖2`2(G) ≥ |A|

3/2|B|3/2/K. Show that there exists a

O(KO(1))-approximate groupH withK−O(1)|A|1/2|B|1/2 ≤ |H| ≤ KO(1)|A|1/2|B|1/2
and elements g, h ∈ G such that |A ∩ gH| � K−O(1)|H| and |B ∩ Hh| �
K−O(1)|H|.

Finally, we can prove Lemma 4.0.19. Fix G, ν,K. We may assume that

(4.6) ‖ν ∗ ν‖`2(G) >
1

K
‖ν‖`2(G)

and we need to use this to locate an O(KO(1))-approximate group H in

G with |H| � KO(1)/‖ν‖2`2(G) and an element x ∈ G such that ν(xH) �
K−O(1).

Let us write M := 1/‖ν‖2`2(G). Intuitively, M represents the “width” of

the probability meaure ν, as can be seen by considering the model example



98 4. Balog-Szemerédi-Gowers and Bourgain-Gamburd

ν = 1
M 1A where A is a symmetric set of cardinality M (i.e. ν is the uniform

probability measure on A). If we were actually in this model case, we could
apply Lemma 4.1.7 immediately and be done. Of course, in general, ν need
not be a uniform measure on a set of size M . However, it turns out that
one can use (4.6) to conclude that the “bulk” of ν is basically of this form.

More precisely, let us split ν = ν< + ν> + ν=, where

ν< := ν1ν≤ 1
100K2M

ν> := ν1ν≥ 10K
M

ν= := ν − ν< − ν>.

Observe that

‖ν<‖2`2(G) ≤
1

100K2M
‖ν‖`1(G) =

1

100K2M

and so by Young’s inequality

‖ν< ∗ ν‖`2(G), ‖ν ∗ ν<‖`2(G) ≤
1

10KM1/2
.

In a similar vein, we have

‖ν>‖`1(G) ≤
M

10K
‖ν‖2`2(G) =

1

10K

and thus by Young’s inequality (and the normalisation ‖ν‖`2(G) = 1/M1/2)

‖ν> ∗ ν‖`2(G), ‖ν ∗ ν>‖`2(G) ≤
1

10KM1/2
.

Finally, from (4.6) one has

‖ν ∗ ν‖`2(G) ≥
1

KM1/2
.

Subtracting using the triangle inequality (ignoring some slight double-counting),
we conclude that

‖ν= ∗ ν=‖`2(G) �
1

KM1/2
.

If we then set A := {g ∈ G : ν(g) > 1
100K2M

}, we conclude in particular that

‖1A ∗ 1A‖`2(G) � K−O(1)M3/2.

On the other hand, from Markov’s inequality one has |A| � K2M . Applying

Lemma 4.1.7, we conclude the existence of a O(KO(1))-approximate group H

with |H| � KO(1)M such that |A∩gH| � K−O(1)M for some g ∈ G, which

by definition of A implies that ν(gH)� K−O(1), and the claim follows.
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4.2. The Bourgain-Gamburd expansion machine

We can now prove Theorem 4.0.20. We can assume that |G| is sufficiently
large depending on the parameters k, κ,Λ, δ′, since the claim is trivial for
bounded G (note that as S generates G, the Cayley graph Cay(G,S) will be
an ε-expander for some ε > 0). Henceforth we allow all implied constants
in the asymptotic notation to depend on k, κ,Λ, δ′.

To show expansion, it suffices from the quasirandomness hypothesis (and
Proposition 3.1.3), it will suffice to show that

(4.7) ‖µ∗n‖`2(G) ≤ |G|−1/2+κ/2

for some n = O(log |G|).
From Young’s inequality, ‖µ∗n‖`2(G) is decreasing in n, and is initially

equal to 1 when n = 0. We need to “flatten” the `2(G) norm of µ∗n as n
increases. We first use the non-concentration hypothesis to obtain an initial
amount of flattening:

Proposition 4.2.1. For any n ≥ 1
2Λ log |G|, one has

(4.8) ‖µ∗n‖`2(G) ≤ |G|−κ/4.

Furthermore, we have

(4.9) µ∗n(gH) ≤ |G|−κ/2

for all proper subgroups H of G and all g ∈ G.

Proof. By the non-concentration hypothesis, we can find n0 ≤ 1
2Λ log |G|

such that

µ∗2n0(H) ≤ |G|−κ

for all proper subgroupsH ofG. If we write µ∗2n0(H) as µ∗n0∗µ∗n0(Hgg−1H),
we see that

µ∗2n0(H) ≥ µ∗n0(Hg)µ∗n0(g−1H)

for all g ∈ G. By symmetry, µ∗n0(g−1H) = µ∗n0(Hg), and thus

sup
g∈G

µ∗n0(gH) ≤ |G|−κ/2.

If n ≥ 1
2Λ log |G|, then we may write µ∗n as the convolution of a probability

measure µ∗(n−n0) and µ∗n0 . From this, we see that

µ∗n(g′H) ≤ sup
g∈G

µ∗n0(gH) ≤ |G|−κ/2

for all g′ ∈ G, giving the claim (4.9). Specialising this to the case when H
is the trivial group, one has

‖µ∗n‖`∞(G) ≤ |G|−κ/2.
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Since we also have

‖µ∗n‖`1(G) = 1,

the claim (4.8) then follows from Hölder’s inequality. �

Now we obtain additional flattening using the product theorem hypoth-
esis:

Lemma 4.2.2 (Flattening lemma). Suppose n ≥ 1
2Λ log |G| is such that

(4.10) ‖µ∗n‖`2(G) ≥ |G|−1/2+κ/2.

Then one has

‖µ∗n ∗ µ∗n‖`2(G) ≤ |G|−ε‖µ∗n‖`2(G)

for some ε > 0 depending only on κ and δ′.

Proof. Suppose the claim fails for some ε to be chosen later, thus

‖µ∗n ∗ µ∗n‖`2(G) > |G|−ε‖µ∗n‖`2(G).

Applying Lemma 4.0.19, we may thus find a O(|G|O(ε))-approximate group
H with

|H| � |G|O(ε)/‖µ∗n‖2`2(G)

and g ∈ G such that

µ∗n(gH)� |G|−O(ε).

Since µ∗n‖`∞(G) ≤ |G|−κ/2 by (4.9), we see that

|H| � |G|κ/2−O(ε).

Meanwhile, from (4.10) one has

|H| � |G|1−κ+O(ε).

Applying the product hypothesis (assuming ε sufficiently small depending
on κ and δ), we conclude that H generates a proper subgroup K of G, and
thus

µ∗n(gK)� |G|−O(ε).

But this contradicts (4.9) (again if ε is sufficiently small). �

Iterating the above lemma O(1) times we obtain (4.7) for some n =
O(log |G|), as desired.

Remark 4.2.3. Roughly speaking, the three hypotheses in Theorem 4.0.20
govern three separate stages of the life cycle of the random walk and its
distributions µ∗n. In the early stage n = o(log |G|), the non-concentration
hypotheses creates some initial spreading of this random walk, in particular
ensuring that the walk “escapes” from cosets of proper subgroups. In the



4.2. The Bourgain-Gamburd expansion machine 101

middle stage n ∼ log |G|, the product theorem steadily flattens the distribu-
tion of the random walk, until it is very roughly comparable to the uniform
distribution. Finally, in the late stage n � log |G|, the quasirandomness
property can smooth out the random walk almost completely to obtain the
mixing necessary for expansion.





Chapter 5

Product theorems,
pivot arguments, and
the Larsen-Pink
non-concentration
inequality

In Chapter 4, we saw that one could derive expansion of Cayley graphs from
three ingredients: non-concentration, product theorems, and quasirandom-
ness. Quasirandomness was discussed in Chapter 3. In this chapter we will
discuss product theorems. Roughly speaking, these theorems assert that in
certain circumstances, a finite subset A of a group G either exhibits expan-
sion (in the sense that A3, say, is significantly larger than A), or is somehow
“close to” or “trapped” by a genuine group. A typical result is the following.

Theorem 5.0.4 (Product theorem in SLd(k)). Let d ≥ 2, let k be a finite
field, and let A be a finite subset of G := SLd(k). Let ε > 0 be sufficiently
small depending on d. Then at least one of the following statements holds:

(i) (Expansion) One has |A3| ≥ |A|1+ε.

(ii) (Close to G) One has |A| ≥ |G|1−Od(ε).

(iii) (Trapping) A is contained in a proper subgroup of G.

We will prove this theorem (which was proven first in the d = 2, 3 cases
for fields F of prime order in [He2008], [He2011], and then for d = 2
and general F in [Di2010], and finally to general d and F independently

103
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in [PySz2010], [BrGrTa2011]) later in this chapter. A more qualitative
version of this proposition was also previously obtained in [Hr2012]. There
are also generalisations of the product theorem of importance to number
theory, in which the field k is replaced by a cyclic ring Z/qZ (with q not
necessarily prime); this was achieved first for d = 2 and q square-free in
[BoGaSa2010], in [Va2012] for general d and q square-free, and finally in
[BoVa2012] for arbitrary d and q.

Exercise 5.0.1 (Girth bound). Assuming Theorem 5.0.4, show that when-
ever S is a symmetric set of generators of SLd(k) for some finite field k and
some d ≥ 2, then any element of SLd(k) can be expressed as the product1

of Od(logOd(1) |k|) elements from S. This is a special case of a conjecture of
Babai and Seress [BaSe1992], who conjectured that the bound should hold
uniformly for all finite simple groups (in particular, the implied constants
here should not actually depend on d. The methods used to handle the
SLd case can handle other finite groups of Lie type of bounded rank, but at
present we do not have bounds that are independent of the rank. On the
other hand, a recent paper of Helfgott and Seress [HeSe2011] has almost
resolved the conjecture for the permutation groups An.

A key tool to establish product theorems is an argument which is some-
times referred to as the pivot argument. To illustrate this argument, let us
first discuss a much simpler (and older) theorem, essentially due to Freiman
[Fr1973b], which has a much weaker conclusion but is valid in any group
G:

Theorem 5.0.5 (Baby product theorem). Let G be a group, and let A be
a finite non-empty subset of G. Then one of the following statements hold:

(i) (Expansion) One has |A−1A| ≥ 3
2 |A|.

(ii) (Close to a subgroup) A is contained in a left-coset of a group H
with |H| < 3

2 |A|.

To prove this theorem, we suppose that the first conclusion does not
hold, thus |A−1A| < 3

2 |A|. Our task is then to place A inside the left-coset
of a fairly small group H.

To do this, we take a group element g ∈ G, and consider the intersection
A∩gA. A priori, the size of this set could range from anywhere from 0 to |A|.
However, we can use the hypothesis |A−1A| < 3

2 |A| to obtain an important
dichotomy, reminiscent of the classical fact that two cosets gH, hH of a
subgroup H of G are either identical or disjoint:

1Equivalently: if we add the identity element to S, then Sm = SLd(k) for some m =

Od(logOd(1) |k|).
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Proposition 5.0.6 (Dichotomy). If g ∈ G, then exactly one of the following
occurs:

(i) (Non-involved case) A ∩ gA is empty.

(ii) (Involved case) |A ∩ gA| > |A|
2 .

Proof. Suppose we are not in the pivot case, so that A ∩ gA is non-empty.
Let a be an element of A ∩ gA, then a and g−1a both lie in A. The sets
A−1a and A−1g−1a then both lie in A−1A. As these sets have cardinality
|A| and lie in A−1A, which has cardinality less than 3

2 |A|, we conclude from
the inclusion-exclusion formula that

|A−1a ∩A−1g−1a| > |A|
2
.

But the left-hand side is equal to |A ∩ gA|, and the claim follows. �

The above proposition provides a clear separation between two types of
elements g ∈ G: the “non-involved” elements, which have nothing to do
with A (in the sense that A ∩ gA = ∅, and the “involved” elements, which
have a lot to do with A (in the sense that |A ∩ gA| > |A|/2. The key point
is that there is a significant “gap” between the non-involved and involved
elements; there are no elements that are only “slightly involved”, in that A
and gA intersect a little but not a lot. It is this gap that will allow us to
upgrade approximate structure to exact structure. Namely,

Proposition 5.0.7. The set H of involved elements is a finite group, and
is equal to AA−1.

Proof. It is clear that the identity element 1 is involved, and that if g is
involved then so is g−1 (since A ∩ g−1A = g−1(A ∩ gA). Now suppose that
g, h are both involved. Then A ∩ gA and A ∩ hA have cardinality greater
than |A|/2 and are both subsets of A, and so have non-empty intersection.
In particular, gA ∩ hA is non-empty, and so A ∩ g−1hA is non-empty. By
Proposition 5.0.6, this makes g−1h involved. It is then clear that H is a
group.

If g ∈ AA−1, then A ∩ gA is non-empty, and so from Proposition 5.0.6
g is involved. Conversely, if g is involved, then g ∈ AA−1. Thus we have
H = AA−1 as claimed. In particular, H is finite. �

Now we can quickly wrap up the proof of Theorem 5.0.5. By construc-
tion, |A ∩ gA| > |A|/2 for all g ∈ H,which by double counting shows that
|H| < 2|A|. As H = AA−1, we see that A is contained in a right coset Hg of
H; setting H ′ := g−1Hg, we conclude that A is contained in a left coset gH ′

of H ′. H ′ is a conjugate of H, and so |H ′| < 2|A|. If h ∈ H ′, then A and Ah
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both lie in H ′ and have cardinality |A|, so must overlap; and so h ∈ AA−1.
Thus AA−1 = H ′, and so |H ′| < 3

2 |A|, and Theorem 5.0.5 follows.

Exercise 5.0.2. Show that the constant 3/2 in Theorem 5.0.5 cannot be
replaced by any larger constant.

Exercise 5.0.3. Let A ⊂ G be a finite non-empty set such that |A2| < 2|A|.
Show that AA−1 = A−1A. (Hint: If ab−1 ∈ AA−1, show that ab−1 = c−1d
for some c, d ∈ A.)

Exercise 5.0.4. Let A ⊂ G be a finite non-empty set such that |A2| < 3
2 |A|.

Show that there is a finite group H with |H| < 3
2 |A| and a group element

g ∈ G such that A ⊂ Hg ∩ gH and H = AA−1.

Exercise 5.0.5. [BrGrTa2013] Let k ≥ 1 be a natural number. Show that
if ε = εk > 0 is sufficiently small depending on k, then given any Cayley
graph Cay(G,S) of a symmetric set S of order k in a finite set which is a one-
sided ε-expander, one either has that Cay(G,S) is a two-sided ε′-expander
for some ε′ > 0 depending only on ε and k, or else there is an index two
subgroup H of G such that S is disjoint from H. (Hint: if Cay(G,S) fails
to be a two-sided expander, find a subset A of G of density close to 1/2
with the property that sA is close to the complement of A for all s ∈ A,
and conclude that for all g ∈ G, the set Ag := A∩Ag has the property that
SAg has approximately the same cardinality as Ag for all s ∈ S. Combine
this with one-sided expansion to obtain a dichotomy concerning the size of
Ag which one can then use to run a pivot argument.)

We now turn to some further examples of the pivot argument in other
group-like situations, including Theorem 5.0.5 and also the “sum-product
theorem” from [BoKaTa2004], [BoGlKo2006].

5.1. The sum-product theorem

Consider a finite non-empty subset A of a field k. Then we may form the
sumset

A+A := {a+ b : a, b ∈ A}
and the product set

A ·A := {ab : ab ∈ A}.
The minimal sizes of such sets are well understood:

Exercise 5.1.1. Let A be a finite non-empty subset of a field k.

(i) Show that |A+A| ≥ |A|, with equality occuring if and only if A is
an additive coset A = x+H of an finite additive subgroup H of k
with some x ∈ k.
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(ii) Show that |A · A| ≥ |A|, with equality occuring if and only if A is
either equal to a multiplicative coset A = gH of a finite multiplica-
tive subgroup H of k× := k\{0} with some g ∈ k×, or the set {0},
or the set {0} ∪ gH where gH is a multiplicative coset.

(iii) Show that max(|A + A|, |A · A|) ≥ |A|, with equality occuring if
and only if A is either equal to a multiplicative dilate A = cF of a
finite subfield F of k with c ∈ k×, or a singleton set.

The sum-product phenomenon is a robust version of the above obser-
vation, asserting that one of A + A or A · A must be significantly larger
than A if A is not somehow “close” to a genuine subfield of k. Here is one
formulation of this phenomenon:

Theorem 5.1.1 (Sum-product theorem). Let ε > 0 be a sufficiently small
number. Then for any field k and any finite non-empty subset A, one of the
following statements hold:

(i) (Expansion) max(|A+A|, |A ·A|) ≥ |A|1+ε.

(ii) (Close to a subfield) There is a dilate cF of a subfield F of k with

|F | � |A|1+O(ε) and c 6= 0 which contains all but O(|A|O(ε)) ele-
ments of A.

(iii) (Smallness) A is an additive subgroup of order 2.

If k has characteristic zero, then the second option here cannot occur,
and we conclude that max(|A + A|, |A · A|) ≥ |A|1+ε for some absolute
constant ε > 0 as soon as A contains at least two non-zero elements, a
claim first established in R by Erdős and Szemeredi [ErSz1983]. When
k is a finite field of prime order, the second option can only occur when
F = k, and we conclude that max(|A + A|, |A · A|) ≥ |A|1+ε as soon as
|A| ≤ |k|1−Cε whenever ε is sufficiently small, C is an absolute constant, and
A has at least two non-zero elements. A preliminary version of this result
(which required more size assumptions on A, in particular a bound of the
shape |A| ≥ |k|δ) was obtained in [BoKaTa2004], with the version stated
above first obtained in [BoGlKo2006]. The proof given here is drawn from
the one in [TaVu2006], and was originally inspired by the arguments in
[BoKo2003].

Remark 5.1.2. There has been a substantial amount of literature on trying
to optimise the exponent ε in the sum-product theorem. In R, the best result
currently in this direction is by Solymosi [So2009], who established that
one can take ε arbitrarily close to 1/3; for C, the best result currently is by
Rudnev [Ru2011], who shows that one can take ε arbitrarily close to 19/69.
For fields of prime order, one can take ε arbitrarily close to 1/11 [Ru2012];
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an extension to arbitrary finite fields was then obtained in [LiRo2011]. For
sum-product theorems in other rings, see [Ta2009c].

We now start proving Theorem 5.1.1. As with Theorem 5.0.5, the engine
of the proof is a dichotomy similar to that of Proposition 5.0.6. Whilst the
former proposition was modeled on the basic group-theoretic assertion that
cosets gH of a subgroup where either identical or disjoint, this proposition
is modeled on the basic linear algebra fact that if F is a subfield of k and
ξ ∈ k, then F + ξF is either of size |F |2, or of size |F |.

Lemma 5.1.3 (Dichotomy). Let k be a field, let A be a finite non-empty
subset of k, and let ξ ∈ k. Then at least one of the following statements
hold:

(i) (Non-involved case) |A+ ξA| = |A|2.

(ii) (Involved case) |A+ ξA| ≤ |(A−A)A+ (A−A)A|.

Proof. Suppose that we are not in the non-involved case, thus |A+ ξA| 6=
|A|2. Then the map (a, b) 7→ a+ ξb from A×A to k is not injective, and so
there exists a, b, c, d ∈ A with (a, b) 6= (c, d) and

a+ ξb = c+ ξd.

In particular, b 6= d. We then have ξ = (a− c)/(d− b) and so

|A+ ξA| = |(d− b)A+ (a− c)A| ≤ |(A−A)A+ (A−A)A|.

�

Remark 5.1.4. One can view A+ ξA as measuring the extent to which the
dilate ξA of A is “transverse” to A. As the “slope” ξ varies, ξA “pivots”
around the origin, encountering both the (relatively rare) involved slopes,
and the (generic) non-involved slopes. It is this geometric picture which led
to the term “pivot argument”, as used in particular by Helfgott [He2011]
(who labeled the non-involved slopes as “pivots”).

This dichotomy becomes useful if there is a significant gap between |(A−
A)A+ (A−A)A| and |A|2. Let’s see how. To prove Theorem 5.1.1, we may
assume that |A| is larger than some large absolute constant C, as the claim
follows from Exercise 5.1.1 otherwise (making ε small enough depending on
C). By deleting 0 from A, and tweaking ε, noting that we may then assume
that A does not contain 0. We suppose that

|A+A|, |A ·A| ≤ K|A|

for some K ≤ |A|ε0 and some sufficiently small absolute constant ε0. In

particular we see that |A| will exceed any quantity of the form O(KO(1)) if
we make ε0 small enough and C large enough.
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We would like to boost this control of sums and products to more com-
plex combinations of A. We will need some basic tools from additive com-
binatorics.

Lemma 5.1.5 (Ruzsa triangle inequality). If A,B,C are non-empty finite

subsets of k, then |A− C| ≤ |A−B||B−C||B| .

Proof. This is the additive version of Exercise 4.1.4. �

Lemma 5.1.6 (Ruzsa covering lemma). If A,B are non-empty finite subsets

of k, then A can be covered by at most |A+B|
|B| translates of B −B.

Proof. This is the additive version of Exercise 4.1.5. �

Exercise 5.1.2 (Sum set estimates). If A,B are non-empty finite subsets

of k such that |A + B| ≤ K|A|1/2|B|1/2, show that A and B can both be

covered by O(KO(1)) translates of the same O(KO(1))-approximate group

H, with |H| � KO(1)|A|. Conclude that

|n1A− n2A+ n3B − n4B| �n1,n2,n3,n4 K
O(|n1|+|n2|+|n3|+|n4|)|A|

for any natural numbers n1, n2, n3, n4, where nA := A+ . . .+A denotes the
sum set of n copies of A. (Hint: use the additive form of Exercise 4.1.7 and
the preceding lemmas.)

These lemmas allow us to improve the sum-product properties of A by
passing to a large subset B (cf. Corollary 4.1.6):

Lemma 5.1.7 (Katz-Tao lemma). Let A be as above. Then there is a subset

B of A with |B| ≥ |A|/2K such that |B2 −B2| � KO(1)|B|.

Proof. The dilates aA of A with a ∈ A all lie in a set A2 of cardinality at
most K|A|. Intuitively, this should force a lot of collision between the aA,
which we will exploit using the sum set estimates. More precisely, observe
that

‖
∑
a∈A

1aA‖`1 = |A|2

and hence by Cauchy-Schwarz

‖
∑
a∈A

1aA‖2`2 ≥ |A|
3/K.

The left-hand side can be written as∑
b∈A

∑
a∈A
|aA ∩ bA|
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and so by the pigeonhole principle we can find b0 ∈ A such that∑
a∈A
|aA ∩ b0A| ≥ |A|2/K.

We apply a dilation to set b0 = 1 (recall that A does not contain 0). If we
set B := {a ∈ A : |aA ∩A| ≥ |A|/2K}, we conclude that∑

a∈B
|aA ∩A| ≥ |A|2/2K

which implies in particular that

|B| ≥ |A|/2K

If a ∈ B, then

|aA ∩A| ≥ |A|/2K;

since |aA+ aA| ≤ K|A| we also have

|aA+ (aA ∩A)| ≤ K|A|

and similarly

|A+ (aA ∩A)| ≤ K|A|
and thus by the Ruzsa triangle inequality

|aA−A| � KO(1)|A|

whenever a ∈ B. Informally, let us call a non-zero element a of k good if
|aA−A| � KO(1)|A| (but note that this notion of “good” is a bit fuzzy, as
it depends on the choice of implied constants in the O() notation). Observe
that if a, a′ are good, then

|aa′A− aA|, |aA−A| � KO(1)|A|

and thus by the Ruzsa triangle inequality

|aa′A−A| � KO(1)|A|,

thus the product of two good elements are good (with somewhat worse
implied constants). Similarly, from the Ruzsa covering lemma we see that

aA and a′A are both covered by O(KO(1)) translates of A − A, and from
this and sum set estimates we see that

|(a+ a′)A−A| � KO(1)|A|

and so the sum of two good elements is again good. Similarly the difference
of good elements is good. Applying all these facts, we conclude that all the
elements of B2−B2 are good, thus |gA−A| � KO(1)|A| for all g ∈ B2−B2.

In particular, since |A| exceeds KO(1), we see from the Cauchy-Schwarz

inequality that for each g ∈ B2 − B2, there are � |A|3/KO(1) solutions
to the equation ga1 − a2 = ga3 − a4 with a1 6= a3 and a1, a2, a3, a4 ∈ A.
However, there are only |A|4 possible choices for a1, a2, a3, a4, and each such



5.1. The sum-product theorem 111

choice uniquely determines g, so there are at most O(KO(1)|A|) possible
choices for g, and the claim follows. �

Note that one could replace B2 − B2 in the above lemma by any other
homogeneous polynomial combination of B.

By applying a dilation, we may assume that B contains 1. Applying
Proposition 5.1.3 to this set B (and using sum set estimates), we arrive at
the following dichotomy: every field element ξ ∈ k is either “non-involved” in
the sense that |B+ξB| = |B|2, or is “involved” in the sense that |B+ξB| ≤
C1K

C1 |B| for some fixed absolute constant C1. By sum set estimates we

have |B + BB| � KO(1)|B|; as we can assume that |A|, and hence |B|, is

larger than any quantity of the form O(KO(1)), this forces all elements of B
to be involved.

To exploit this, observe (by repeating the proof of Proposition 5.1.3)
that if ξ1, ξ2 are involved, then the quantities ξ = ξ1ξ2, ξ1 + ξ2, ξ1 − ξ2 are
somewhat involved in the sense that

|B + ξB| � KO(1)|B|

for those choices of ξ (where the implied constants depend on C1). But as we
can assume that |A|, and hence |B|, is larger than any quantity of the form

O(KO(1)), we see from Proposition 5.1.3 that this forces ξ to be involved
as well (this is the crucial step at which approximate structure is improved
to exact structure). We thus see that the set F of all involved elements is
closed under multiplication, addition, and subtraction; as it also contains 0,
it is a subring of k. Arguing as in the proof of Proposition 5.1.3, we have
that F is finite with |F | � KO(1)|A|; in particular, F must now be a finite
subfield of k.

Now we enter the “endgame”, in which we use this F to control A. By
previous discussion, F contains B, and thus |A ∩ F | � K−O(1)|A|. By the
Ruzsa triangle inequality applied to A,A∩F, F , this implies that |A+F | �
KO(1)|F |, and so A can be covered by O(KO(1)) translates of F . A similar

argument applied multiplicatively shows that A can be covered by O(KO(1))
dilates of F . Since a non-trivial translate of F and a non-trivial dilate of F
intersect in at most one point, we conclude that A has at most O(KO(1))
elements outside of F , and the claim follows.

Remark 5.1.8. One can abstract this argument by replacing the multiplica-
tive structure here by an abelian group action; see [He2011] for details. The
argument can also extend to non-commutative settings, such as division al-
gebras or more generally to arbitrary rings (though in the latter case, the
presence of non-trivial zero-divisors becomes a very significant issue); see
[Ta2009c] for details.
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5.2. Finite subgroups of SL2

We will shortly establish Theorem 5.0.4, which can be viewed as a way to
describe approximate subgroups of SLd(k). Before we do so, let us first
warm up and digress slightly by by studying genuine finite subgroups A of
SLd(k), in the model case d = 2, which is simplified by the availability of
some additional ad hoc explicit calculations. In order to make the algebraic
geometry of the situation cleaner, it is convenient to embed the field k in its
algebraic closure k, and similarly embed SL2(k) in SL2(k). This is a group
which is also an algebraic variety (identifying the space of 2 × 2 matrices

with coefficients in k with k
4
), whose group operations are algebraic (in fact,

polynomial) maps; in other words, SL2(k) is an algebraic group. We now
consider the question of what finite subgroups of SL2(k) can look like. This
is a classical question, with a complete classification obtained by Dickson
[Di1901]. The precise classification is somewhat complicated; to give just a
taste of this complexity, we observe that the symmetry group of the isoca-
hedron is a finite subgroup of SO3(R), which can be lifted to the spin group
Spin3(R) (giving what is known as the binary isocahedral group, a group of
order 120), which is a subgroup of Spin3(C), which can be identified with
SL2(C). Because of this, it is possible for some choices of finite field k to
embed the binary isocahedral group into SL2(k) or SL2(k). Similar consid-
erations obtain for the symmetry group of other Platonic solids. However,
if one is willing to settle for a “rough” classification, in which one ignores
groups of bounded size (and more generally, is willing just to describe a
bounded index subgroup of the group A), the situation becomes much sim-
pler. In the characteristic zero case k = C, for instance, we have Jordan’s
theorem (Theorem 3.2.1), which asserts that given a finite subgroup A of
SLd(C) for some d = O(1), a bounded index subgroup of A is abelian. The
finite characteristic case is inherently more complicated though (due in large
part to the proliferation of finite subfields), with a satisfactory rough classi-
fication only becoming available for general d with the work of Larsen and
Pink [LaPi2011] (published in 2011, but which first appeared as a preprint
in 1998). However, the d = 2 case is significantly simpler and can be treated
by somewhat ad hoc methods, as we shall now do. The discussion here is
loosely based on [Ko2012].

We pause to recall some basic structural facts about SL2(k). Elements
of this group are 2 × 2 matrices with determinant one, and thus have two
(algebraic, possibly repeated) eigenvalues t, t−1 for some t ∈ k (note here
that we are using the algebraically closed nature of k). This allows us to
classify elements of SL2(k) into three classes:

(i) The central elements ±1;
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(ii) The regular unipotent elements and their negations, which are non-
central elements with a double eigenvalue at +1 (or a double eigen-
value at −1); and

(iii) The regular semisimple elements, which have two distinct eigenval-
ues.

We collectively refer to regular unipotent elements and their negations
as regular projectively unipotent elements.

Remark 5.2.1. The presence of the non-identity central element −1 leads
to some slight technical annoyances (for instance, it means that SL2 merely
an almost simple algebraic group rather than a simple one, in the sense
that the only normal algebraic subgroups are finite). One can eliminate this
element by working instead with the projective special linear group P SL2 :=
SL2 /{±1}, but we will not do so here. We remark that if one works in SLd
for d > 2 then the classification of elements becomes significantly more
complicated, for instance there exist elements which are semisimple (i.e.
diagonalisable) but neither regular nor central, because some but not all of
the eigenvalues may be repeated.

One can distinguish the unipotent elements from the semisimple ones
using the trace: unipotent elements have trace +2, their negations have trace
−2, and the semisimple elements have traces distinct from ±2. The ability
to classify elements purely from the trace is a very special fact concerning
SL2 which breaks down completely for higher rank matrix groups, but we
will not hesitate to take advantage of this fact here.

Associated to the above classification are some natural algebraic sub-
groups of SL2(k), including the standard maximal torus

T (k) :=

{(
t 0
0 t−1

)
: t ∈ k×

}
,

the one-dimensional standard unipotent group

U(k) :=

{(
1 x
0 1

)
: x ∈ k

}
,

and the two-dimensional standard Borel subgroup

B(k) :=

{(
t x
0 t−1

)
: x ∈ k; t ∈ k×

}
.

More generally, we define2 a maximal torus of SL2(k) to be a conjugate (in
SL2(k)) of the standard maximal torus, a unipotent group to be a conjugate

2This is not really the “right” way to define these groups, for the purpose of generalisation

to other algebraic groups, but will suffice as long as we are only working with SL2. See Section
12.2 for a discussion of the more general setting of a Chevalley group over an arbitrary field.
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of the standard unipotent group, and a Borel subgroup to be a conjugate
of the standard Borel subgroup. Note that one can also think of a Borel

subgroup as the stabiliser of a one-dimensional subspace of k
2

(using the

obvious action of SL2(k) on k
2
). Using the Jordan normal form (again

taking advantage of the algebraically closed nature of k), we can see how
these groups interact with group elements:

(i) The central elements lie in every maximal torus and every Borel
subgroup. The identity +1 lies in every unipotent group, but −1
lies in none of them.

(ii) Every regular unipotent element lies in exactly one unipotent group,
which in turn lies in exactly one Borel subgroup (the normaliser of
the unipotent group). Conversely, a unipotent group consists en-
tirely of regular unipotent elements and the identity +1.

(iii) Every regular semisimple element lies in exactly one maximal torus,
which in turn lies in exactly two Borel subgroups (the stabiliser of
one of the eigenspaces of a regular semisimple element in the torus).
Conversely, a maximal torus consists entirely of regular semisimple
elements and the central elements ±1.

Remark 5.2.2. If one was working in a non-algebraically closed field F
instead of in k, one could subdivide the regular semisimple elements into
two classes, the split case when the elements can be diagonalised inside F ,
and the non-split case when they can only be diagonalised in a quadratic
extension of F . This similarly subdivides maximal tori into two families, the
split tori and the non-split tori. In the case when one is working over the
field R, the unipotent, split semisimple, and non-split semisimple elements
are referred to as parabolic, hyperbolic, and elliptic elements of SL2(R)
respectively. Fortunately, in our applications we can work in algebraically
closed fields and avoid these sorts of finer distinctions.

Ignoring the exceptional small examples of subgroups of SL2(k), such as
the binary isocahedral group mentioned earlier, there are two obvious ways
to generate subgroups of SL2(k). One is to pass from k to a subfield F ,
creating “arithmetic” subgroups of the form SL2(F ) (or conjugates thereof).
If F is not closed under square roots, one can also create a slightly larger

subgroup S̃L2(F ), consisting of matrices in SL2(k) of the form cM , where
M is a 2× 2 matrix with entries in F and c is a scalar with c2 ∈ F ; one can
check that this is a group that contains SL2(F ) as a subgroup of index at
most two.
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The other way to generate subgroups of SL2(k) is to replace SL2 with an
algebraic subgroup of the three-dimensional group SL2, such as3 the maximal
tori, unipotent groups, and Borel subgroups mentioned earlier.

Observe that if A = SL2(F ) is an arithmetic subgroup, then its inter-
sections T (F ) := A ∩ T (k), U(F ) := A ∩ U(k), B(F ) := A ∩ B(k) capture
a portion of A proportionate to the dimensions involved, or more precisely
that

|A ∩ T (k)| � |A|1/3; |A ∩ U(k)| � |A|1/3; |A ∩B(k)| � |A|2/3.
Indeed, it is easy to see that |A| = |SL2(F )| ∼ |F |3, |A ∩ T (k)| = |T (F )| ∼
|F |, and so forth. An important and general observation of Larsen and
Pink [LaPi2011] is that this sort of behaviour is shared by all other finite
subgroups of algebraic groups such as SL2(k), as long as these groups are
not (mostly) trapped in a proper algebraic subgroup. We first illustrate this
phenomenon for the torus groups:

Proposition 5.2.3 (Larsen-Pink inequality, special case). Let A be a finite
subgroup of SL2(k). Then one of the following statements hold:

(i) (Non-concentration) For any maximal torus T , one has |A ∩ T | �
|A|1/3.

(ii) (Trapping) There is a Borel subgroup B such that |A ∩B| � |A|.

Proof. Suppose that the trapping hypothesis fails, thus |A ∩ B| = o(|A|)
for all Borel subgroups B, where we interpret4 o(|A|) here to mean “less
than ε|A| for an arbitrarily small constant ε > 0 which we are at liberty
to choose”. In particular, we see that any coset of B occupies a fraction

o(1) at most of A. Thus, for instance, if we select an element

(
a b
c d

)
from

A uniformly at random, then with probability 1 − o(1), b is non-zero, and
similarly for a, c, d. To put it more informally, the matrix entries of an
element of A are “generically” non-zero. Similarly if we first conjugate A by
a fixed group element.

We need to show that |A ∩ T | � |A|1/3 for any maximal torus T . By
conjugation we may take T to be the standard maximal torus T = T (k).
Set A′ := A ∩ T (k), then A′ is a subgroup of A of the form

A′ :=

{(
t 0
0 t−1

)
: t ∈ H

}
3Actually, these are the only (connected) proper algebraic subgroups of SL2, as can be seen

by consideration of the associated Lie algebras.
4If one is uncomfortable with this type of definition, one can instead consider a sequence of

potential counterexamples A = An to the above proposition in various groups SL2(kn), in which
supB |A ∩ B| = on→∞(|A|). Alternatively, one can also rephrase this argument if desired in the

language of nonstandard analysis.
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for some finite multiplicative subgroup H of k
×

. We may assume that |H|
is larger than any given absolute constant, as the claim is trivial otherwise.
Our task is to show that |H|3 � |A|.

Let g =

(
a b
c d

)
be a typical element of A. By the preceding discussion,

we may assume that a, b, c, d are all non-zero. Since A′ is a subgroup of A,
we have A′gA′gA′ ⊂ A, thus(

t1 0

0 t−1
1

)(
a b
c d

)(
t2 0

0 t−1
2

)(
a b
c d

)(
t3 0

0 t−1
3

)
∈ A

for all t1, t2, t3 ∈ H. We evaluate the inner matrix products to obtain that(
t1 0

0 t−1
1

)(
a2t2 + bct−1

2 act2 + bdt−1
2

act2 + cdt−1
2 bct2 + d2t−1

2

)(
t3 0

0 t−1
3

)
∈ A

for t1, t2, t3 ∈ H.

Because a, b, c, d are non-zero, we see that for all but O(1) values of t2, all
four entries of the middle matrix here are non-zero. As a consequence, if one
fixes t2 and lets t1, t3 vary, all of the triple products given above are distinct.
Note that if one takes the above triple product and multiplies the diagonal
entries together, the t1, t3 terms cancel and one obtains (a2t2 +bct−1

2 )(bct2 +

d2t−1
2 ). This rational map (as a function of t2) is at most four-to-one; each

value of this map is associated to at most four values of t2. Putting all this
together, we conclude that there are � |H|3 different triple products one
can form here as t1, t2, t3 ∈ H vary, and the claim follows. �

Exercise 5.2.1. Establish a variant of Proposition 5.2.3 in which the max-
imal tori are replaced by unipotent groups.

Given a group element g ∈ SL2(k), let Conj(g) := {hgh−1 : h ∈ SL2(k)}
be the conjugacy class of g. The behaviour of this class depends on the
nature of g:

Exercise 5.2.2. Let g be an element of SL2(k).

(i) If g is central, show that Conj(g) = {g}.
(ii) If g is regular unipotent, show that Conj(g) is the space of all

regular unipotent elements.

(iii) If g is negative of a regular unipotent element, show that Conj(g)
is the space of all negatives of regular unipotent elements.

(iv) If g is regular semisimple, show that Conj(g) := {g′ ∈ SL2(k) :
tr(g) = tr(g′)}.

We can “dualise” the upper bound on maximal tori in Proposition 5.2.3
into a lower bound on conjugacy classes:
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Proposition 5.2.4 (Large conjugacy classes). Let A be a finite subgroup of
SL2(k). Then one of the following statements hold:

(i) (Large conjugacy classes) For any regular semisimple or regular

projectively unipotent g ∈ A, one has |A ∩ Conj(g)| � |A|2/3.

(ii) (Trapping) There is a Borel subgroup B such that |A ∩B| � |A|.

Proof. As before we may assume that |A ∩ B| = o(|A|) for all Borel sub-
groups B. Let g ∈ A be regular semisimple or regular projectively unipo-
tent, and consider the map φ : h 7→ hgh−1 from A to A ∩ Conj(g). For
each g′ ∈ A ∩ Conj(g), the preimage of g′ by φ is contained in a coset of
the centraliser C(g′) := {h ∈ SL2(k) : hg′ = g′h} of g′. As g (and hence
g′) is regular semisimple or regular projectively unipotent, this centraliser is
a maximal torus or (two copies of) a unipotent group (this can be seen by
placing g in Jordan normal form). By Proposition 5.2.3 or Exercise 5.2.1,

we conclude that each preimage of φ has cardinality O(|A|1/3), which forces

the range to have cardinality � |A|2/3 as claimed. �

We remark that this gives a dichotomy analogous to Lemma 5.0.6 or
Lemma 5.1.3 in the case |A∩B| = o(|A|). Namely, for any g ∈ SL2(k), either

A ∩Conj(g) is empty, or |A ∩Conj(g)| � |A|2/3. We will take advantage of
a dichotomy similar to this (but for tori instead of conjugacy classes) in the
next section.

We can match the lower bound in Proposition 5.2.4 with an upper bound:

Proposition 5.2.5 (Larsen-Pink inequality, another special case). Let A be
a finite subgroup of SL2(k). Then one of the following statements hold:

(i) (Non-concentration) For any regular semisimple g ∈ SL2(k), one

has |A ∩ Conj(g)| � |A|2/3.

(ii) (Trapping) There is a Borel subgroup B such that |A ∩B| � |A|.

Proof. Again, we may assume that |A∩B| = o(|A|) for all Borel subgroups
B. In particular, we may take |A| larger than any given absolute constant.
Let g be regular semisimple, and let S := A ∩ Conj(g) = {s ∈ A : tr(s) =

tr(g)}; our task is to show that |S| � |A|2/3. Note from Exercise 5.2.2 that
g is conjugate to g−1, and so S is symmetric: S = S−1. Also, Sa = aS for
all a ∈ A.

Observe that whenever a, b ∈ A and s ∈ S∩a−1S∩ b−1S, then the triple
(s, as, bs) lies in S3; conversely, every triple in S3 arises in this manner.
Thus we have the identity

|S|3 =
∑
a,b∈A

|S ∩ a−1S ∩ b−1S|.
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We will show that

(5.1)
∑
a,b∈A

|S ∩ a−1S ∩ b−1S| � |A|2 + |A|4/3|S|,

which will give |S| � |A|2/3 as required.

We now establish (5.1). We divide into several contributions. First
suppose that a = ±1. Then we bound the summand by |S|; there are
O(|A|) summands here, leading to a total contribution of O(|A||S|), which
is acceptable. Similarly if b = ±1, or a = ±b, so we may restrict to the
remaining cases when ±1, ±a, ±b are distinct. In particular, a, b are now
either regular unipotent or regular semisimple.

We now consider the case in which 1, a, b are linearly dependent (in the
space M2(k) of 2 × 2 matrices). For fixed a, this constrains b to either
a maximal torus or a unipotent group (depending on whether a is regular
semisimple or regular projectively unipotent); this is easiest to see by placing
a in Jordan canonical form. By the preceding results, we see that there are
O(|A|1/3) choices of b for each |A|, leading to a contribution of O(|A|4/3|S|)
in this case, which is acceptable. So we may now take 1, a, b to be linearly
independent.

The set S ∩ a−1S ∩ b−1S is the intersection of A with the affine line

` := {s ∈M2(k); tr(s) = tr(as) = tr(bs) = tr(g)};

this is indeed a line when 1, a, b are linearly independent. In most cases,
this line ` will intersect SL2(k) (which we can view as a quadric surface in
M2(k)) in at most two points, leading to a contribution of O(|A|2) for this
case, which is acceptable. The only cases left to treat are when the line
` are incident to SL2(k). This only occurs when the line ` takes the form
hU for some h ∈ SL2(k) and unipotent group U ; this is easiest to see by
multiplying ` on the left so that it contains the identity, and then placing
another element of the line in Jordan normal form. In that case, we have

tr(hu) = tr(ahu) = tr(bhu) = tr(g)

for all u ∈ U . This forces h, ah, bh to all lie in the Borel subgroup B
associated to U (this is easiest to see by first conjugating U into the standard
unipotent group U(k)). In particular, a, b both lie in B. Furthermore, if we
write tr(g) = t + t−1, then the diagonal entries of h, ah, bh are t, t−1 or
t−1, t, and so the diagonal entries of a, b are either 1, 1 or t−2, t2 or t2, t−2.
In particular, U is the stabiliser of one of the eigenvectors of a - so for fixed a,
there are at most two choices for U (recall that a was regular). Furthermore,
for fixed a and U , b is constrained to lie in at most three cosets of U . As
such, there are only O(|A|1/3) choices of b here for each a, giving another

contribution of O(|A|4/3|S|), and the claim follows. �
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Exercise 5.2.3. Let A be a finite subgroup of SL2(k), such that |A∩B| =
o(|A|) for all Borel subgroups B. Show that at most O(|A|2/3) of the ele-
ments of A are unipotent.

We can use the upper bound on conjugacy classes to obtain a lower
bound on tori:

Proposition 5.2.6 (Large tori). Let A be a finite subgroup of SL2(k). Then
one of the following statements hold:

(i) (Large torus) For any regular semisimple g ∈ A, one has |A∩T | �
|A|1/3, where T is the unique maximal torus containing g.

(ii) (Trapping) There is a Borel subgroup B such that |A ∩B| � |A|.

Proof. We can of course assume that the trapping case does not occur. We
consider the map φ : a 7→ aga−1 from A to A ∩ Conj(g). By Proposition

5.2.5, the range of φ has cardinality O(|A|2/3), so by the pigeonhole principle,

there is a preimage of A∩Conj(g) of cardinality� |A|1/3. But all preimages

are conjugate to each other, so the preimage of g has cardinality � |A|1/3.
But this preimage is the intersection of A with the centraliser of g, which is
T , and so |A ∩ T | � |A|1/3 as required. �

Exercise 5.2.4. Establish a variant of Proposition 5.2.6 in which g is regular
unipotent instead of regular semisimple, and T is replaced with the unique
unipotent group containing g.

This gives a second (and particularly useful) dichotomy: assuming A is
not trapped by a Borel subgroup, for a maximal torus T , |A ∩ T | is either

at most two, or is comparable to |A|1/3.

To exploit this, we use the following counting argument of Larsen and
Pink [LaPi2011] (which is also reminiscent of an old argument of Jordan
[Jo1878], used to prove Theorem 3.2.1), followed by some ad hoc arguments
specific to SL2. We continue to assume that A is not trapped by a Borel
subgroup. Let Z := A ∩ {+1,−1} denote the central elements of A, thus
|Z| is either 1 or 2. Observe that every element in A\Z is either regular
projectively unipotent or regular semisimple; in the latter case, the element
lies in a unique maximal torus, which also contains Z. We conclude the
class equation

|A| − |Z| = u+
∑
T

(|A ∩ T | − |Z|)

where T ranges over all the maximal tori that intersect A, and u is the
number of regular projective unipotents in A.

If we conjugate a maximal torus T by an element of A, we get another
maximal torus, or the same maximal torus if the element used to conjugate
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T in was in the normaliser NA(T ) := {a ∈ A : aT = Ta} of T . Thus, by
the orbit-stabilizer theorem, there are exactly |A|/|NA(T )| tori conjugate to
T in A. We thus see that

|A| − |Z| = u+
∑
T∈T

|A|
|NA(T )|

(|A ∩ T | − |Z|)

where T is a collection of representatives of conjugacy classes of maximal
tori intersecting A in a regular semisimple element. We rearrange this as

1 =
u+ |Z|
|A|

+
∑
T∈T

1

[NA(T ) : A ∩ T ]
(1− |Z|

|A ∩ T |
).

Note that if T is a maximal torus, the normaliser of T in SL2(k) has index
2. As such, A ∩ T has index at most two in NA(T ), and so 1

[NA(T ):A∩T ]

is either equal to 1 or 1/2 for each T . From the preceding bounds on

tori and unipotent elements, we also have |Z|
|A∩T | ∼ |A|

−1/3 and u+|Z|
|A| =

O(|A|−1/3). As we are assuming |A| to be large, the above equation is only

consistent when T has cardinality 1 or 2, and u+|Z|
|A| is comparable to |A|−1/3,

or equivalently that u is comparable to |A|2/3. Thus, A has plenty of regular
projective unipotents (matching the upper bound from Exercise 5.2.3); in
particular, there is at least one regular unipotent.

Applying a conjugation, we may assume that A contains e :=

(
1 1
0 1

)
,

thus

A ∩ U(k) =

{(
1 t
0 1

)
: t ∈ E

}
for some additive group E ⊂ k containing 1. By Exercise 5.2.1, |E| � |A|1/3;

by Exercise 5.2.4, we have |E| � |A|1/3 also.

The map a 7→ a(A∩U(k))a−1 maps A to unipotent groups that intersect

A in ∼ |A|1/3 regular unipotents. As there are ∼ |A|2/3 regular unipotent

elements in A, we see that there are only O(|A|1/3) such unipotent groups
available. From the pigeonhole principle and conjugation, we conclude that
the preimage of U(k) in this map has cardinality� |A|2/3. But this preimage
is simply A ∩ B(k). In particular, the quotient (A ∩ B(k))/(A ∩ U(k)) has

cardinality � |A|1/3. Observe that each element of this quotient acts on
A∩U(k) by conjugation, and the corresponding action on E is multiplicative
(by the square of a diagonal entry of an element in the quotient). As such,
if we set

F := {ξ ∈ k : ξE ⊂ E}
to be the “multiplicative symmetry set” of E, then we have |F | � |A|1/3.

As E is a finite additive group, F is a field of size at most |E| � |A|1/3,

thus F is a finite field of cardinality |F | ∼ |A|1/3. Also, E is a vector space
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over F ; as E contains 1 and has cardinality O(|A|1/3), we see that E = F .
Thus we have

(5.2) A ∩ U(k) =

(
1 F
0 1

)
.

Also, as (A ∩B(k))/(A ∩ U(k)) has to stabilise F , we see that all elements
of A∩B(k) have diagonal elements whose square lies in F . Combining this
with (5.2), we see that A ∩B(k) takes the form

(5.3) A ∩B(k) =

{(
t f(t) + tx
0 t−1

)
: t ∈ H,x ∈ F

}
for some multiplicative group H of elements whose square lies in F× (in
particular, H∩F× has index at most 2 in H), and some function f : H → k;

since A ∩ B(k) has cardinality � |A|2/3 ∼ |F |2, H must have cardinality
∼ |F |. By taking the commutators of two matrices in (5.3), we see that

(5.4) f(t)(s− s−1)− f(s)(t− t−1) ∈ F

for all s, t ∈ H.

If we select t0 ∈ H∩F× such that t0−t−1
0 is non-zero, then by conjugating

A by a suitable element of U(k) (which does not affect any of the previous
control established on A) we may normalise f(t0) to be zero. From (5.4) this
makes f(t) ∈ tF for all t ∈ H. In particular, A ∩B(k) is almost completely
contained in B(F ):

(5.5) |A ∩B(k) ∩B(F )| ≥ |A ∩B(k)|/2.

Now for any g ∈ A, the subgroups A ∩B(k) and g−1(A ∩B(k))g of A have

index O(|A|1/3), so their intersection must have cardinality � |A|1/3 � |F |,
thus

|A ∩B(F ) ∩ gB(F )g−1| � |F |.
In particular, there must exist either a regular unipotent or a regular semisim-
ple element h ∈ A of B(F ) such that ghg−1 also lies in B(F ). If h is regular
semisimple in B(F ), it has an eigenbasis in F 2, and so g must map such an
eigenbasis to another eigenbasis, and is thus either diagonal or antidiagonal

in this basis; in either case we can check that g lies in S̃L2(F ), which we
recall is the group of matrices in SL2(k) of the form cM where M is a 2× 2
matrix with entries in F and c2 ∈ F .

If instead h is regular unipotent, it has the line {0} × k as the unique
(geometric) eigenspace; g must preserve this eigenspace and thus lies in

B(k); from (5.3) and the fact that f(t) ∈ tF , this implies that g ∈ S̃L2(F ).

Combining the cases, we conclude that A ⊂ S̃L2(F ). We may therefore
summarise our discussion as follows:
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Theorem 5.2.7 (Rough description of finite subgroups of SL2). Let A be a
finite subgroup of SL2(k). Then one of the following statements hold:

(i) (Arithmetic subgroup) There is a finite subfield F of k with |F | ∼
|A|1/3 such that A is contained in a conjugate of S̃L2(F ) (and is
thus a subgroup of that conjugate of index O(1)).

(ii) (Trapping) There is a Borel subgroup B such that |A ∩B| � |A|.

In principle, the trapping case can be analysed further (using manipula-
tions similar to those used to reach (5.5)) but we will not pursue this here.
We remark that while these computations were somewhat lengthy (and less
elementary and precise than the more classical results of [Di1901]), they can
extend to more complicated algebraic groups, such as SLd(k), or more gen-
erally to any algebraic group of bounded rank; see [LaPi2011] for details.
In particular, in [LaPi2011] these methods were used to establish an impor-
tant subcase of the famous classification of finite simple groups, namely by
verifying this classification for sufficiently large subgroups of a linear group
of bounded rank over a field of arbitrary characteristic. It is conceivable
that these methods may be extended in the future to give an alternate proof
of the full classification (for sufficiently large groups, at least).

5.3. The product theorem in SL2(k)

In this section we prove the d = 2 case of Theorem 5.0.4. This result was
first established (for fields of prime order) by Helfgott [He2008] and then in
the general case by Dinai [Di2010]; we will present a variant of Helfgott’s
original argument which was developed independently in [BrGrTa2011]
and [PySz2010]. It is convenient to rephrase Helfgott’s theorem as follows:

Theorem 5.3.1 (Product theorem in SL2(k), alternate form). Let k be
a finite field, and let A be a K-approximate group in G := SL2(k) that
generates G for some K ≥ 2. Then one of the following holds:

(i) (Close to trivial) One has |A| � KO(1).

(ii) (Close to G) One has |A| ≥ K−O(1)|G|.

Exercise 5.3.1. Show that Theorem 5.0.4 follows from Theorem 5.3.1.
(Hint: if |A3| ≤ |A|1+ε, use the multiplicative form of the Rusza triangle and

covering lemmas to show that (A∪{1}∪A−1)2 is a O(|A|O(ε))-approximate
group.)

The problem now concerns the behaviour of finite approximate sub-
groups A of SL2(k). The first step will be to establish analogues5 of the

5The observation that these inequalities could be usefully extended to the approximate group
setting is due to Hrushovski [Hr2012] (based on a more general model-theoretic observation in
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Larsen-Pink non-concentration inequalities of the preceding section, but for
approximate subgroups rather than genuine subgroups. We begin by elimi-
nating concentration in linear subgroups.

Lemma 5.3.2 (Escape from subspaces). Let A, K be as in Theorem 5.3.1,
and let C > 0. Then one of the following holds:

(i) (Close to trivial) One has |A| �C K
OC(1).

(ii) (Escape) For any d = 0, 1, 2, 3 and any d-dimensional subspace

V of k
4
, such that V ∩ SL2(k) is a subgroup of SL2(k), one has

|A2 ∩ V | ≤ K−C |A|.

In practice, we will only apply the escape conclusion for Borel subgroups
of SL2(k), which are intersections of SL2(k) with three-dimensional sub-
spaces; however, we need to work with the more general escape construc-
tion in the proof of the lemma, for inductive purposes. The claim can in
fact be established for any d-dimensional subspace V , or more generally for
bounded complexity d-dimensional algebraic varieties; this will be discussed
in the next section.

Proof. We induct on d. For d = 0, the claim is trivial, since |A2 ∩ V | = 1
in that case. Now suppose that d = 1, 2, 3, and the claim has already been
proven for smaller values of d.

Let V be a d-dimensional subspace of SL2(k) with V ∩ SL2(k) a group,
and suppose for contradiction that |A2∩V | > K−C |A|. As A2 can be covered
by K copies of A, we can find a ∈ A such that

(5.6) |aA ∩ V | > K−C−1|A|.

Suppose that there exists an element b of A such that bV b−1 6= V , so
that bV b−1 ∩ V has dimension strictly less than V . From (5.6) we have

|A4 ∩ bV b−1| ≥ |baAb−1 ∩ bV b−1| > K−C−1|A|.

Recall that A4 can be covered by at most K3 left translates gA of A; we may
restrict to those g for which gA intersects A4, so g ∈ A5. By the pigeonhole
principle, we may therefore find g ∈ A5 such that

|gA ∩ bV b−1| > K−C−4|A|.

Let A1 := aA ∩ V and A2 := gA ∩ bV b−1. Then A1A
−1
2 is contained in A7,

and so 1A1 ∗ 1A−1
2

is supported on a set of cardinality at most K6|A|. Since

‖1A1 ∗ 1A−1
2
‖`1 = |A1||A2| ≥ K−2C−5|A|2

[HrWa2008]), although for the specific case of SL2(k), the most important of these inequalities
for the purposes of proving Theorem 5.3.1 were first established in [He2008].
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we thus see from the pigeonhole principle that

|1A1 ∗ 1A−1
2

(x)| ≥ K−2C−11|A|.

The left-hand side is |A1 ∩ xA2|, and thus

|(A1 ∩ xA2)−1 · (A1 ∩ xA2)| ≥ K−2C−11|A|.

The set in the left-hand side is contained in both A2 and in V ∩ (bV b−1)
(here we use the group nature of V ∩ SL2(k)), and so

|A2 ∩ V ∩ (bV b−1)| ≥ K−2C−11|A|.

Applying the induction hypothesis, we conclude that |A| ≤ KOC(1), and the
claim follows.

The only remaining case is when bV b−1 = V for all b ∈ A. As A
generates SL2(k), this implies that V is normalised by SL2(k). But this is
impossible if V has dimension 1, 2, 3; see Exercise 5.3.2 below. �

Exercise 5.3.2 (Almost simplicity of SL2(k)). Let V be a subspace of k
4

of dimension 1, 2, or 3. Show that the group {g ∈ SL2(k) : gV g−1 = V }
does not contain all of SL2(k).

Now we can obtain an approximate version of Proposition 5.2.3:

Proposition 5.3.3 (Larsen-Pink inequality, special case). Let A, K be as
in Theorem 5.3.1. Then for any maximal torus T , one has |A2 ∩ T | �
KO(1)|A|1/3.

In the context of SL2, this bound on torus concentration was first estab-
lished in [He2008] (and extended to SLd in [He2011]).

Proof. We may assume that |A| ≥ KC for any given constant C, as the
claim is trivial otherwise. Similarly, by Lemma 5.3.2, we may assume that
|A2 ∩B| ≤ K−C |B| for all Borel subgroups B.

We need to show that |A2 ∩ T | � KO(1)|A|1/3 for any maximal torus T .
By conjugation we may take T to be the standard maximal torus T = T (k).
(This may make A generate a conjugate of SL2(k), rather than SL2(k) itself,
but this will not impact our argument). Set A′ := A2 ∩ T (k), then

A′ :=

{(
t 0
0 t−1

)
: t ∈ H

}
for some finite subset H of k

×
. We may assume that |H| ≥ KC , as the

claim is trivial otherwise. Our task is to show that |H|3 � KO(1)|A|.
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As in the proof of Proposition 5.2.3, we may find an element g =

(
a b
c d

)
of A2 with a, b, c, d all non-zero. Since A′gA′gA′ ⊂ A10, thus(

t1 0

0 t−1
1

)(
a b
c d

)(
t2 0

0 t−1
2

)(
a b
c d

)(
t3 0

0 t−1
3

)
∈ A10

for all t1, t2, t3 ∈ H. Arguing as in Proposition 5.3.3, we have

|H|3 � |A10|,

and the claim follows. �

Exercise 5.3.3. Show that if the non-concentration conclusion in Proposi-
tion 5.3.3 holds, then for every maximal torus T and every m ≥ 1, one has
|Am ∩ T | �m KOm(1)|A|1/3.

We can now establish variants of the other Larsen-Pink inequalities from
the preceding section:

Exercise 5.3.4. Establish a variant of Proposition 5.3.3 in which the max-
imal tori are replaced by unipotent groups.

Exercise 5.3.5 (Large conjugacy classes). Let A, K be as in Theorem
5.3.1. Show that for any regular semisimple or regular projectively unipotent
g ∈ A, one has |A3 ∩ Conj(g)| � K−O(1)|A|2/3.

Exercise 5.3.6 (Larsen-Pink inequality, another special case). Let A, K
be as in Theorem 5.3.1. Show that for any regular semisimple g ∈ SL2(k)

and any m ≥ 1, one has |Am ∩ Conj(g)| �m KOm(1)|A|2/3.

Exercise 5.3.7 (Unipotent bound). Let A, K be as in Theorem 5.3.1. Show

that O(KO(1)|A|2/3) of the elements of A are unipotent.

Exercise 5.3.8 (Large tori). Let A, K be as in Theorem 5.3.1. Show that

for any regular semisimple g ∈ A2, one has |A4 ∩ T | � K−O(1)|A|1/3, where
T is the unique maximal torus containing g. In fact one has |A2 ∩ T | �
K−O(1)|A|1/3. (For the latter claim, cover A4 by left translates of A.)

We remark that versions of most the results in the above exercises were
first obtained in the context of SL2 in [He2008] (and extended to SLd in
[He2011]). However, the lower bound in Exercise 5.3.8 was only obtained in
those papers for some maximal tori meeting A2 non-trivially, rather than for
all such tori, leading to some additional technical complications in Helfgott’s
proof of Theorem 5.3.1.

We now have a dichotomy: given a maximal torus T , either A2 ∩ T has
no regular semisimple elements (and thus contains only central elements), or

else has cardinality � K−O(1)|A|1/3. We exploit this dichotomy as follows.
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Call a maximal torus T involved if A2 ∩ T contains a regular semisimple
element.

Lemma 5.3.4 (Key lemma). Let A, K be as in Theorem 5.3.1. Then one
of the following statements hold:

(i) (Involved) If T is an involved torus and a ∈ A, then aTa−1 is an
involved torus.

(ii) (Close to trivial) One has |A| � KO(1).

Proof. Let T be an involved torus, then by the preceding exercise we have
|A2 ∩ T | � K−O(1)|A|1/3, and thus |A4 ∩ aTa−1| � K−O(1)|A|1/3. Thus,

one has |gA ∩ aTa−1| � K−O(1)|A|1/3 for some g ∈ G, which implies that

|A2 ∩ aTa−1| � K−O(1)|A|1/3. In particular, if A is not close to trivial,
A2∩aTa−1 contains a regular semisimple element and so aTa−1 is involved,
as desired. �

We can now finish the proof of Theorem 5.3.1. Suppose A is not close
to trivial. As there are at most O(KO(1)|A|2/3) unipotent elements and
O(1) central elements in A, A at least one regular semisimple element, and
so there is at least one involved torus. By the above lemma, and the fact
that A generates G, we see that the set of involved tori is invariant under
conjugation by G. As G has cardinality � |k|3, and its intersection with
the stabiliser of a single torus has cardinality O(|k|), we conclude that there

are � |k|2 � |G|2/3 involved tori. By Exercise 5.3.8, each of these tori

contains � K−O(1)|A|1/3 regular semisimple elements of A2. Since each
regular semisimple element belongs to a unique maximal torus, we conclude
that

|A2| � |G|2/3K−O(1)|A|1/3;

as |A2| ≤ K|A|, we conclude that |A| � K−O(1)|G|, as claimed.

Exercise 5.3.9. Let A be a finite K-approximate subgroup of SL2(k) for
some algebraically closed field k. Show that one of the following statements
hold:

(i) (Close to group) A generates a finite subgroup G of SL2(k) with

|G| � KO(1)|A|.
(ii) (Concentrated in Borel) There is a Borel subgroup B of SL2(k)

with |A ∩B| � K−O(1)|B|.

(Hint: this does not follow directly from Theorem 5.3.1, but can be estab-
lished by a modification of the proof of that theorem.)

Note that the above exercise can be combined with Theorem 5.2.7 to
give a more detailed description of A. The Borel group B is solvable, and
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by using tools from additive combinatorics, such as inverse product theorems
(see e.g. [Ta2013, §1.8] for a discussion), one can give even more precise
descriptions of A (at the cost of losing polynomial dependence of the bounds
on K), but we will not discuss these topics here.

Exercise 5.3.10. Use Exercise 5.3.9 to give an alternate proof of Theorem
5.1.1. (Hint: there are a number of ways to embed the sum-product problem
in a field k into a product problem in SL2(k) (or SL2(k)). For instance, one

consider the tripling properties of sets of the form {
(
a b
c d

)
: a, b, c, d ∈ A}

in terms of sets such as A2 +A2 or A3 +A3 +A3 +A3, and then project this
set onto SL2(k) (or P SL2(k)), and combine this with the Katz-Tao lemma
to obtain Theorem 5.1.1. More details of this connection can be found in
[BrGrTa2011, Section 8].) This is of course a much more complicated and
inefficient way to establish the sum-product theorem, but it does illustrate
the link between the two results (beyond the fact that both proofs exploit
a dichotomy). Note also that the original proof of the product theorem in
SL2(Fp) in [He2008] actually used the sum-product theorem in Fp as a key
tool.

5.4. The product theorem in SLd(k)

We now discuss the extension of the SL2(k) product theory to the more
general groups SLd(k). Actually, the arguments here will be valid in any
almost simple connected algebraic group of bounded rank, but for sake of
concreteness we will work with SLd(k). (This also has the (very) minor
advantage that SLd is an affine variety rather than a projective one, so we

can work entirely in affine spaces such as Ad2(k) := k
d2

; related to this, the
only regular maps we need to consider will be polynomial in nature.) There
is also some recent work on product theorems in other algebraic groups
than the almost simple ones; see for instance the papers of [PySz2010],
[BrGrTa2011], [GiHe2010]; see [PySz2012] for a recent survey of these
results.

The treatment of the d = 2 case relied on a number of ad hoc com-
putations which were only valid in SL2, and also on the pleasant fact that
the only non-regular elements of SL2 were the central elements ±1, which
is certainly false for higher values of d. In [He2011], the original d = 2
arguments from [He2008] were pushed to the d = 3 case, but again the
arguments were somewhat ad hoc in nature and did not seem to extend
to the general setting. However, the arguments based on the Larsen-Pink
concentration estimates have proven to be quite general, and in particular
can handle the situation of SLd(k). The one catch is that instead of working
with very concrete and explicit subsets of SL2, such as Borel subgroups or
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other intersections SL2 ∩V with linear spaces V , one has to work with more
general algebraic subvarieties of SLd. As such, a certain amount of basic
algebraic geometry becomes necessary. Also, because we are seeking results
with quantitative bounds, we will need to keep some track of the “complex-
ity” of the varieties that one encounters in the course of the argument.

We now very quickly review some algebraic geometry notions, though
for reasons of space we will not attempt to develop the full theory of alge-
braic geometry here, referring instead to standard texts such as [Ha1995],
[Mu1999], [Gr1994]. As usual, algebraic geometry is cleanest when work-
ing over an algebraically closed field, so we will work primarily over k.

Definition 5.4.1 (Variety). Let M ≥ d ≥ 0 be integers, and let k be an

algebraically closed field. We write Ad(k) for the affine space k
d
.

(i) An (affine) variety V = V (k) ⊂ Ad(k) of complexity6 at most M
is a set of the form

V = {x ∈ kd : P1(x) = . . . = Pm(x) = 0},
where 0 ≤ m ≤ M and P1, . . . , Pm : Ad(k) → k are polynomials
of degree at most M . Note that the union or intersection of two
varieties of complexity at most M , is another variety of complexity
at most OM (1).

(ii) A variety is irreducible if it cannot be expressed as the union of two
proper (i.e. strict) subvarieties.

Thus, for instance, SLd(k) is a variety of complexity Od(1) in Ad2(k)
(after identifying this latter affine space with the space of d × d matrices
over k).

It is known that any variety can be expressed as the union of a finite
number of irreducible components, and this decomposition is unique if we
require that no component is contained in any other. Furthermore, to each
irreducible variety V one can assign a dimension dim(V ), defined as the
maximal integer D for which there exists a chain

∅ 6= V0 ( . . . ( VD = V

of irreducible varieties. For instance, it can be shown that Ad(k) has dimen-
sion d (as expected). We define the dimension of a non-irreducible variety
V to be the least integer D such that V can be covered by finitely many
irreducible varieties of dimension D. If a (non-empty) variety V can be cut
out from an irreducible variety W by setting m polynomials to zero, then

6Thus the complexity parameter M controls the dimension, degree, and number of polyno-
mials needed to cut out the variety. Note that we do not assume our varieties to be irreducible,

and as such what we call a variety corresponds to what is sometimes known as an algebraic set in
the literature.
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one has dim(W ) − m ≤ dim(V ) ≤ dim(W ). Since SLd(k) can be cut out

from Ad2(k) by a single polynomial, and is not equal to all of Ad2(k), we
conclude in particular that SLd(k) has dimension d2 − 1.

One can show that the image of a D-dimensional variety by a polynomial
map P : Ad1 → Ad2 is contained in a variety of dimension at most D. One
can thus produce upper bounds on the dimension of varieties, by covering
them by polynomial images of varieties already known to be bounded by the
same dimension.

An algebraic subgroup of SLd(k) is a subvariety of SLd(k) which is also
a subgroup of SLd(k). For instance, the standard maximal torus T (k), con-
sisting of all the diagonal elements of SLd(k), is an algebraic subgroup; more
generally, any maximal torus, by which we mean a conjugate of the standard
maximal torus, is an algebraic subgroup.

Exercise 5.4.1. Show that every maximal torus has dimension d − 1 and
complexity Od(1).

Dual to the maximal tori are the conjugacy classes Conj(g) := {hgh−1 :
h ∈ SLd(k)} of regular semisimple elements. We call a element g of SLd(k)
regular semisimple if it has d distinct eigenvalues, and is thus diagonalisable.
Observe that each regular semisimple element lies in precisely one maximal
torus.

Exercise 5.4.2. Show that every conjugacy class of a regular semisimple
element has dimension d2 − d and complexity Od(1).

If F is a finite subfield of k, then SLd(F ) is a finite subgroup of SLd(k),
and is thus technically a 0-dimensional algebraic subgroup of SLd(k). How-
ever, the complexity of this algebraic group is huge (comparable to the car-
dinality of SLd(F )). It turns out that SLd(F ) is “effectively Zariski-dense”
in the sense that it cannot be captured in a low complexity algebraic variety:

Lemma 5.4.2 (Schwartz-Zippel lemma for SLd(F )). Let V be a proper
subvariety of SLd(k) of complexity at most M . Let F be a finite subfield of
k. Then

|SLd(F ) ∩ V | �M,d |F |d
2−2.

Proof. SLd(k) is the hypersurface in Ad2(k) cut out by the determinant

polynomial. As V is a proper subvariety, we can find a polynomial P : k
d2 →

k which is not a multiple of the determinant polynomial, but which vanishes
on V ; by the complexity hypothesis we may take P to have degree OM,d(1).
Our task is then to show that

|{x ∈ SLd(F ) : P (x) = 0}| �M,d |F |d
2−2.
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Let us write the d2 coordinates of Ad2(k) arbitrarily as x1, . . . , xd2 . In
a given element of SLd(F ), not all of the xi can be zero; thus by symmetry
and relabeling if necessary it suffices to show that

(5.7) |{x ∈ SLd(F ) : P (x) = 0;xd2 6= 0}| �M,d |F |d
2−2.

But then one can express xd2 as a rational function of the other d2 − 1
coordinates, and the left-hand side of (5.7) is contained in a set of the form

{x ∈ F d2−1 : Q(x) = 0} for some polynomial Q of degree OM,d(1) that is not
identically zero. The claim then follows from the Schwartz-Zippel lemma,
which we give as an exercise below. �

Exercise 5.4.3 (Schwartz-Zippel lemma). Let F be a finite field, and let
Q : F d → F be a polynomial of degree D that is not identically zero. Show
that

|{x ∈ F d : Q(x) = 0}| �d D|F |d−1.

For an additional challenge, obtain the sharper bound

|{x ∈ F d : Q(x) = 0}| ≤ D|F |d−1.

We contrast this with the size of SLd(F ) itself:

Exercise 5.4.4. Let F be a finite field. Show that |F |d2−1 �d | SLd(F )| �d

|F |d2−1.

The key non-concentration inequality we will need is the following.

Proposition 5.4.3 (Larsen-Pink inequality). Let A be a K-approximate
subgroup of SLd(k) for some K ≥ 2, and let V be a subvariety of SLd(k) of
complexity at most M . Let m ≥ 1. Then one of the following is true:

(i) (Non-concentration) One has

(5.8) |Am ∩ V | �M,d,m KOM,d,m(1)|A|dim(V )/dim(SLd).

(ii) (Trapping) A is contained in a proper algebraic subgroup H of
SLd(k) of complexity OM,d,m(1).

This inequality subsumes results such as Proposition 5.3.3, Exercise
5.3.4, and Exercise 5.3.6. Note that if A generates SLd(F ) for some finite
field F , then (5.8) holds unconditionally; indeed, from Lemma 5.4.2 (and
Exercise 5.4.4) that the trapping option of the above proposition cannot
occur with |F | is sufficiently large depending on M,d,m, while the non-
concentration claim (5.8) is trivial when |F | = OM,d,m(1).

The proof of Proposition 5.4.3 is somewhat complicated and is deferred
to the next section. We record some particular consequences of this inequal-
ity.
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Exercise 5.4.5 (Consequences of the non-concentration inequality). Let A
be a K-approximate subgroup of SLd(k) for some K ≥ 2, which generates
SLd(F ) for some finite field F .

(i) If T is a maximal torus (and thus of dimension d − 1), show that

|A10 ∩ T | �d K
Od(1)|A|

1
d+1 .

(ii) If T0 denotes the elements of a maximal torus T which are not

regular semisimple, show that |A10 ∩ T | �d K
Od(1)|A|

d−2

d2−1 .

(iii) If g ∈ SLd(k) is regular semisimple, show that |A10 ∩ Conj(g)| �d

KOd(1)|A|
d
d+1 .

(iv) Show that at most Od(K
Od(1)|A|

d2−2

d2−1 ) of the elements of A are not
regular semisimple.

(v) For any regular semisimple g ∈ A, show that |A3 ∩ Conj(g)| �d

K−Od(1)|A|
d
d+1 .

(vi) For any regular semisimple g ∈ A, show that |A2∩T | �d K
−Od(1)|A|

1
d+1 .

Exercise 5.4.6. By repeating the arguments of the preceding section, es-
tablish Theorem 5.0.4 for general d.

Remark 5.4.4. There is an analogue of Exercise 5.3.9, in which the role of
the Borel subgroups is replaced by proper algebraic subgroups of bounded
complexity; see [BrGrTa2011, Theorem 5.5] for a more precise statement.

5.5. Proof of the Larsen-Pink inequality

We now prove Proposition 5.4.3. In order to escape the burden of having to
keep track of the complexity of everything, we will use the tool of ultraprod-
ucts (which we will phrase in the language of nonstandard analysis). See
[Ta2013, §1.7] for a discussion of ultraproducts and how they can be used
to turn quantitative (or “hard”) analysis tasks into qualitative (or “soft”)
analysis tasks. One can also use the machinery of schemes and inverse limits
as a substitute for the ultraproduct formalism; this is the approach taken
in [LaPi2011]. The paper [BrGrTa2011] has a slightly reduced reliance
on ultraproducts, at the cost of more complexity bookkeeping, while the pa-
per [PySz2010] avoids ultraproducts altogether but has perhaps the most
bookkeeping of all the papers mentioned here (but, by the same token, is
the only argument currently known which gives effective bounds). We will
thus presume some familiarity both with ultraproducts (and nonstandard
analysis) and with algebraic geometry in this section.

As in [Ta2013, §1.7], we select a non-principal ultrafilter α ∈ βN\N,
and use it to construct ultraproducts and nonstandard objects. (To ensure
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the existence of such an object, we shall assume the axiom of choice, as we
have already been doing implicitly throughout this course.) We also use the
usual nonstandard asymptotic notation, thus for instance O(1) denotes a
nonstandard quantity bounded in magnitude by a standard number.

The quantitative Larsen-Pink inequality (Proposition 5.4.3) can then be
deduced from the following nonstandard version, in which all references to
complexity are now absent:

Proposition 5.5.1 (Larsen-Pink inequality). Let d ≥ 2 be standard. Let
k =

∏
n→α kn be a nonstandard algebraically complete field (i.e. an ultra-

product of standard algebraically complete fields). Let K = limn→αKn ≥ 2
be a nonstandard natural number, and let A be a nonstandard K-approximate
subgroup of SLd(k) (i.e. an ultraproduct A =

∏
n→αAn of standard Kn-

approximate subgroups of SLd(kn)), and let V be a subvariety of SLd(k).
Then one of the following is true:

(i) (Non-concentration) One has

(5.9) |Am ∩ V | � KO(1)|A|dim(V )/dim(SLd)

for all standard m ≥ 1, where |A| := limn→α |An| is the nonstan-
dard cardinality of A.

(ii) (Trapping) A is contained in a proper algebraic subgroup H of
SLd(k).

Let us see why Proposition 5.5.1 implies Proposition 5.4.3. Suppose for
contradiction that Proposition 5.4.3 failed. Carefully negating all the quan-
tifiers (and using the axiom of choice), this means that there is a sequence
kn of standard algebraically closed fields, a sequence Kn ≥ 2 of standard
numbers, a sequence An of Kn-approximate subgroups of SLd(kn), and a
standard M ≥ 1, a sequence Vn of subvarieties of SLd(kn) of complexity at
most M , and a standard m ≥ 1, such that for each n, An is not contained
in a proper algebraic subgroup of SLd(kn) of complexity n or less, and one
has

|Amn ∩ Vn| ≥ nKn|A|dim(Vn)/dim(SLd).

Now one forms the ultralimit K := limn→αKn and the ultraproducts k :=∏
n→α kn, A :=

∏
n→αAn, V :=

∏
n→α Vn. Then k is an algebraically closed

field, A is a nonstandard K-approximate subgroup of SLd(k), and V is an
algebraic subvariety of SLd(k) (here we use the uniform complexity bound).
One can also show that dim(V ) = limn→α dim(Vn); see [Ta2012, Lemma
2.1.8]. As such, we have

|Am ∩ V | 6� KO(1)|A|dim(V )/dim(SLd),
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so by Proposition 5.5.1, A is contained in a proper algebraic subgroup H
of SLd(k). By unpacking the coefficients of all the polynomials over k used
to cut out H, we see that H is itself an ultraproduct H =

∏
n→αHn of

proper algebraic subgroups of SLd(kn), of complexity bounded uniformly in
n. By  Los’s theorem (see e.g. [BrGrTa2011b, Theorem A.5]), one has
An ⊂ Hn for all n sufficiently close to α, which gives a contradiction for n
large enough.

It remains to establish Proposition 5.5.1. By  Los’s theorem, the ultra-
product k of algebraically closed fields is again algebraically closed, which
allows us to use algebraic geometry in the nonstandard field k without dif-
ficulty.

Let 〈A〉 be the group generated byA, and consider the Zariski closure 〈A〉
of this group, that is to say the intersection of all the varieties containing 〈A〉.
This is again an algebraic variety (here we use the Noetherian property of
varieties, that there does not exist any infinite descending chain of varieties),
and is also a group (exercise!), and is thus an algebraic subgroup of SLd(k).
If this subgroup is proper then we have the trapping propertly, so we may
assume that the closure is all of SLd(k). In other words, 〈A〉 is Zariski dense
in SLd(k).

For any dimension D between 0 and dim(SLd) inclusive, and any stan-
dard real σ, let us call σ D-admissible if one has the bound

|Am ∩ V | � KO(1)|A|σ

whenever m ≥ 1 is standard and V is a D-dimensional subvariety of SLd(k).
Our task is to show that D/dim(SLd) is admissible for all 0 ≤ D ≤
dim(SLd). This claim is trivial at the two endpoints D = 0 and D =
dim(SLd); the difficulty is to somehow “interpolate” between these two end-
points. We need the following combinatorial observation.

Exercise 5.5.1 (Extreme dimensions). Suppose for sake of contradiction
that D/dim(SLd) is inadmissible for some 0 < D < dim(SLd). Show that
we can find dimensions

0 < D1 ≤ D2 < dim(SLd)

and a real number θ ≥ 1/ dim(SLd) such that

(i) D1θ is not D1-admissible;

(ii) D2θ is not D2-admissible;

(iii) Dθ is D-admissible whenever 0 ≤ D < D1 or D2 < D ≤ dim(SLd);

(iv) (D + 1)θ is D-admissible for any 0 ≤ D ≤ dim(SLd).
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Let D1, D2, θ be as in the above exercise. By construction, we can then
find subvarieties V1, V2 of SLd(k) of dimension D1, D2 respectively and stan-
dard positive integers m1,m2 such that

(5.10) |Am1 ∩ V1| 6� KO(1)|A|θD1

and

(5.11) |Am2 ∩ V2| 6� KO(1)|A|θD2 .

On the other hand, we have

(5.12) |Am ∩ V | � KO(1)|A|θ(dim(V )+1)

whenever V is a subvariety of SLd(k), with the improvement

(5.13) |Am ∩ V | � KO(1)|A|θ dim(V )

whenever V has dimension strictly less than D1, or strictly greater than D2.

We can use (5.12), (5.13) to show that Am1 × Am2 is “quantitatively
Zariski dense” in V1 × V2:

Lemma 5.5.2 (Quantitative Zariski density). For any proper subvariety W
of V1 × V2, we have

|(Am1 ×Am2) ∩W | � KO(1)|A|θ(D1+D2).

Proof. W has dimension at most D1 + D2 − 1. By standard algebraic
geometry, we see that for each 0 ≤ D ≤ D1, the set of y ∈ V2 for which
the slice {x ∈ V1 : (x, y) ∈ W} has dimension D, has dimension at most
D1 + D2 − D − 1. In particular, if D < D1, then by (5.12), (5.13) the
contribution of such x to |(Am1 ×Am2) ∩W | is at most

KO(1) × |A|θD ×KO(1)|A|θ(D1+D2−D−1+1)

while if D = D1, then the contribution is at most7

KO(1) × |A|θ(D+1) ×KO(1)|A|θ(D1+D2−D−1).

Summing over all D we obtain the claim. �

We will now use a counting argument (which is, unsurprisingly, related
to the counting argument used to establish Proposition 5.3.3, or any of the
other Larsen-Pink inequalities in preceding sections) to obtain a contradic-
tion from these four estimates.

First, by decomposing V1, V2 into irreducible components (and using
(5.12) to eliminate all lower-dimensional components) we may assume that
V1, V2 are both irreducible.

7One may wonder about the question of uniformity in the O() notation, but in nonstandard

analysis one can automatically gain such uniformity through countable saturation; see [Ta2013,
Exercise 1.7.20].
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The product V1 · V2 is not necessarily a variety, but it is still a con-
structible set (i.e. a finite boolean combination of varieties), and can still
be assigned a dimension (by equating the dimension of a constructible set
with the dimension of its Zariski closure). As it contains a translate of V2,
it has dimension at least D2. It would be convenient if V1 · V2 had dimen-
sion strictly greater than V2. This is not necessarily the case, but it turns
out that it becomes so after a generic conjugation, thanks to the almost
simplicity of SLd:

Exercise 5.5.2 (Almost simplicity). Show that the only proper normal
subgroups of SLd(k) are those contained in the centre of SLd(k), i.e. in
the identity matrix multipled by the dth roots of unity. (Hint: Let G be a
normal subgroup of SLd(k) that contains an element which is not a multiple
of the identity. Place that element in Jordan normal form and divide it by

one of its conjugates to make it fix a subspace of k
d
; iterate this procedure

until one finds an element in G that is the direct sum of the identity in
SLd−2(k) and a non-central element of SL2(k). Then use this to generate all
of SLd(k).)

Proposition 5.5.3 (Generic skewness). For generic g ∈ SLd(k) (i.e. for
all g in SLd(k) outside of a lower-dimensional variety), the set V1 · g ·V2 has
dimension strictly greater than D2.

Proof. Let g ∈ SLd(k), and assume that V1 ·g ·V2 has dimension exactly D2.
This set contains all the translates xgV2 with x ∈ V1, which are each D2-
dimensional irreducible varieties. By splitting up V1 ·g ·V2 into components,
we conclude that there are only finitely many distinct translates xgV2. If
we denote one of these translates as W , the set {x ∈ SLd(k) : xgV2 = W}
is easily seen to be a variety (as it is the intersection of varieties Wy−1g−1

for y ∈ V2); as a finite number of these sets cover V1, at least one of them
has to be all of V1; thus there is a W such that xgV2 = W for all x ∈ V1. In
particular, this implies that g−1y−1xgV2 = V2 for all x, y ∈ V1.

Let S := {h ∈ SLd(k) : hV2 = V2}. Arguing as before, S is a variety, and
is also a group; it is thus an algebraic group, and by the preceding discussion
we have g−1V −1

1 V1g ⊂ S.

The set {g ∈ SLd(k) : g−1V −1
1 V1g ⊂ S} is a variety. If it has dimension

strictly less than that of SLd, we are done, so we may assume this set is all
of SLd; thus g−1V −1

1 V1g ⊂ S for all g ∈ SLd(k). By almost simplicity, the

normal subgroup generated by V −1
1 V1 is all of SLd(k); thus S must be all of

SLd(k), thus hV2 = V2 for all h ∈ SLd(k). But this forces V2 = SLd(k), a
contradiction since D2 is strictly less than dim(SLd). �
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Combining this proposition with the Zariski density of 〈A〉, we see that
we can find g ∈ Am for some standard m such that V1 · g · V2 has dimension
D strictly greater than D2.

Fix this g. Let φ : V1 × V2 → V1 · g · V2 be the twisted product map
φ(x, y) := xgy. We have the double counting identity∑

z∈Am1+m+m2∩V1·g·V2

|Am1 ×Am2 ∩ φ−1({z})| = |Am1 ∩ V1||Am2 ∩ V2|

and thus by (5.10), (5.11)∑
z∈Am1+m+m2∩V1·g·V2

|Am1 ×Am2 ∩ φ−1({z})| 6� KO(1)|A|θ(D1+D2).

Now, φ is a map from an irreducible D1 + D2-dimensional variety to
a D-dimensional variety with Zariski-dense image, and is thus a dominant
map. Among other things, this implies that there is a subvariety S of V1×V2

of dimension at most D1 + D2 − 1 such that for all x ∈ V1 · g · V2, the set
φ−1({x})\S has dimension D1 +D2 −D. By (5.13), we then have

|Am1 ×Am2 ∩ φ−1({z})\S| � KO(1)|A|θ(D1+D2−D)

for all z ∈ Am1+m+m2 ∩V1 · g · V2; by another application of (5.13), we have

|Am1+m+m2 ∩ V1 · g · V2| � KO(1)|A|θD.
Combining these estimates we see that∑

z∈Am1+m+m2∩V1·g·V2

|Am1 ×Am2 ∩ φ−1({z}) ∩ S| 6� KO(1)|A|θ(D1+D2).

The left-hand side simplifies to |Am1 ×Am2 ∩ S|. But this then contradicts
Lemma 5.5.2.



Chapter 6

Non-concentration in
subgroups

In the last few chapters, we discussed the Bourgain-Gamburd expansion ma-
chine and two of its three ingredients, namely quasirandomness and product
theorems, leaving only the non-concentration ingredient to discuss. We can
summarise the results of the last three chapters, in the case of fields of prime
order, as the following theorem.

Theorem 6.0.4 (Non-concentration implies expansion in SLd). Let p be a
prime, let d ≥ 1, and let S be a symmetric set of elements in G := SLd(Fp)
of cardinality |S| = k not containing the identity. Write µ := 1

|S|
∑

s∈S δs,

and suppose that one has the non-concentration property

(6.1) sup
H<G

µ∗n(H) < |G|−κ

for some κ > 0 and some even integer n ≤ Λ log |G|. Then Cay(G,S) is a
two-sided ε-expander for some ε > 0 depending only on k, d, κ,Λ.

Proof. From (6.1) we see that µ∗n is not supported in any proper subgroup
H of G, which implies that S generates G. The claim now follows from
the Bourgain-Gamburd expansion machine (Theorem 4.0.20), the product
theorem (Theorem 5.0.4), and quasirandomness (Exercise 3.0.11). �

Remark 6.0.5. The above type of theorem was generalised to the setting
of cyclic groups Z/qZ with q square-free by Varju [Va2012], to arbitrary q
by Bourgain and Varju [BoVa2012], and to more general algebraic groups
than SLd and square-free q by Salehi-Golsefidy and Varju [SGVa2012].
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It thus remains to construct tools that can establish the non-concentration
property (6.1). The situation is particularly simple in SL2(Fp), as we have a
good understanding of the subgroups of that group. Indeed, from Theorem
5.2.7, we obtain the following corollary to Theorem 6.0.4:

Corollary 6.0.6 (Non-concentration implies expansion in SL2). Let p be
a prime, and let S be a symmetric set of elements in G := SL2(Fp) of
cardinality |S| = k not containing the identity. Write µ := 1

|S|
∑

s∈S δs, and

suppose that one has the non-concentration property

(6.2) sup
B
µ∗n(B) < |G|−κ

for some κ > 0 and some even integer n ≤ Λ log |G|, where B ranges over
all Borel subgroups of SL2(F ). Then, if |G| is sufficiently large depending
on k, κ,Λ, Cay(G,S) is a two-sided ε-expander for some ε > 0 depending
only on k, κ,Λ.

It turns out (6.2) can be verified in many cases by exploiting the solvable
nature of the Borel subgroups B. We give two examples of this in this
chapter. The first result, due to Bourgain and Gamburd [BoGa2008] (with
earlier partial results by Gamburd [Ga2002] and by Shalom [Sh2000])
generalises Selberg’s expander construction to the case when S generates a
thin subgroup of SL2(Z):

Theorem 6.0.7 (Expansion in thin subgroups). Let S be a symmetric sub-
set of SL2(Z) not containing the identity, and suppose that the group 〈S〉
generated by S is not virtually solvable (i.e. it does not have a finite in-
dex subgroup which is solvable). Then as p ranges over all sufficiently large
primes, the Cayley graphs Cay(SL2(Fp), πp(S)) form a two-sided expander
family, where πp : SL2(Z)→ SL2(Fp) is the usual projection.

Remark 6.0.8. One corollary of Theorem 6.0.7 (or of the non-concentration
estimate (6.3) below) is that πp(S) generates SL2(Fp) for all sufficiently
large p, if 〈S〉 is not virtually solvable. This is a special case of a much more
general result, known as the strong approximation theorem, although this
is certainly not the most direct way to prove such a theorem. Conversely,
the strong approximation property is used in generalisations of this result
to higher rank groups than SL2.

Exercise 6.0.3. In the converse direction, if 〈S〉 is virtually solvable, show
that for sufficiently large p, πp(S) fails to generate SL2(Fp). (Hint: use
Theorem 5.2.7 to prevent SL2(Fp) from having bounded index solvable sub-
groups.)

Exercise 6.0.4 (Lubotzsky’s 1-2-3 problem). Let S := {
(

1 ±3
0 1

)
,

(
1 0
±3 1

)
}.



6.1. Expansion in thin subgroups 139

(i) Show that S generates a free subgroup of SL2(Z). (Hint: use a
ping-pong argument, as in Exercise 2.3.1.)

(ii) Show that if v, w are two distinct elements of the sector {(x, y) ∈
R2

+ : x/2 < y < 2x}, then there is no element g ∈ 〈S〉 for which
gv = w. (Hint: this is another ping-pong argument.) Conclude
that 〈S〉 has infinite index in SL2(Z). (Contrast this with the sit-
uation in which the 3 coefficients in S are replaced by 1 or 2, in
which case 〈S〉 is either all of SL2(Z), or a finite index subgroup,
as demonstrated in Exercise 2.3.1).

(iii) Show that Cay(SL2(Fp), πp(S)) for sufficiently large primes p form
a two-sided expander family.

Remark 6.0.9. Theorem 6.0.7 has been generalised to arbitrary linear
groups, and with Fp replaced by Z/qZ for square-free q; see [SGVa2012].
In this more general setting, the condition of virtual solvability must be re-
placed by the condition that the connected component of the Zariski closure
of 〈S〉 is perfect (i.e. it is equal to its own commutator group). An effective
version of Theorem 6.0.7 (with completely explicit constants) was recently
obtained in [Ko2012].

The second example concerns Cayley graphs constructed using random
elements of SL2(Fp).

Theorem 6.0.10 (Random generators expand). Let p be a prime, and
let x, y be two elements of SL2(Fp) chosen uniformly at random. Then
with probability 1 − op→∞(1), Cay(SL2(Fp), {x, x−1, y, y−1}) is a two-sided
ε-expander for some absolute constant ε.

Remark 6.0.11. As with Theorem 6.0.7, Theorem 6.0.10 has also been ex-
tended to a number of other groups, such as the Suzuki groups (in [BrGrTa2011c]),
and more generally to finite simple groups of Lie type of bounded rank (in
[BrGrTa2013]). There are a number of other constructions of expanding
Cayley graphs in such groups (and in other interesting groups, such as the
alternating groups) beyond those discussed in this chapter; see [Lu2012]
for further discussion. It has been conjectured by Lubotzky and Weiss
[LuWe1993] that any pair x, y of (say) SL2(Fp) that generates the group,
is a two-sided ε-expander for an absolute constant ε: in the case of SL2(Fp),
this has been established for a density one set of primes in [BrGa2010].

6.1. Expansion in thin subgroups

We now prove Theorem 6.0.7. The first observation is that the expansion
property is monotone in the group 〈S〉:
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Exercise 6.1.1. Let S, S′ be symmetric subsets of SL2(Z) not contain-
ing the identity, such that 〈S〉 ⊂ 〈S′〉. Suppose that Cay(SL2(Fp), πp(S))
is a two-sided expander family for sufficiently large primes p. Show that
Cay(SL2(Fp), πp(S

′)) is also a two-sided expander family.

As a consequence, Theorem 6.0.7 follows from the following two stat-
ments:

Theorem 6.1.1 (Tits alternative). Let Γ ⊂ SL2(Z) be a group. Then
exactly one of the following statements holds:

(i) Γ is virtually solvable.

(ii) Γ contains a copy of the free group F2 of two generators as a sub-
group.

Theorem 6.1.2 (Expansion in free groups). Let x, y ∈ SL2(Z) be generators
of a free subgroup of SL2(Z). Then as p ranges over all sufficiently large
primes, the Cayley graphs Cay(SL2(Fp), πp({x, y, x−1, y−1})) form a two-
sided expander family.

Theorem 6.1.1 is a special case of the famous Tits alternative [Ti1972],
which among other things allows one to replace SL2(Z) by GLd(k) for any
d ≥ 1 and any field k of characteristic zero (and fields of positive char-
acteristic are also allowed, if one adds the requirement that Γ be finitely
generated). We will not prove the full Tits alternative here, but instead just
give an ad hoc proof of the special case in Theorem 6.1.1 in the following
exercise.

Exercise 6.1.2. Given any matrix g ∈ SL2(Z), the singular values are ‖g‖op

and ‖g‖−1
op , and we can apply the singular value decomposition to decompose

g = u1(g)‖g‖opv
∗
1(g) + u2(g)‖g‖−1

op v2(g)∗

where u1(g), u2(g) ∈ C2 and v1(g), v2(g) ∈ C2 are orthonormal bases.
(When ‖g‖op > 1, these bases are uniquely determined up to phase ro-

tation.) We let ũ1(g) ∈ CP1 be the projection of u1(g) to the projective
complex plane, and similarly define ṽ2(g).

Let Γ be a subgroup of SL2(Z). Call a pair (u, v) ∈ CP1 × CP1 a
limit point of Γ if there exists a sequence gn ∈ Γ with ‖gn‖op → ∞ and
(ũ1(gn), ṽ2(gn))→ (u, v).

(i) Show that if Γ is infinite, then there is at least one limit point.

(ii) Show that if (u, v) is a limit point, then so is (v, u).

(iii) Show that if there are two limit points (u, v), (u′, v′) with {u, v} ∩
{u′, v′} = ∅, then there exist g, h ∈ Γ that generate a free group.
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(Hint: Choose (ũ1(g), ṽ2(g)) close to (u, v) and (ũ1(h), ṽ2(h)) close
to (u′, v′), and consider the action of g and h on CP1, and specifi-
cally on small neighbourhoods of u, v, u′, v′, and set up a ping-pong
type situation.)

(iv) Show that if g ∈ SL2(Z) is hyperbolic (i.e. it has an eigenvalue
greater than 1), with eigenvectors u, v, then the projectivisations
(ũ, ṽ) of u, v form a limit point. Similarly, if g is regular para-
bolic (i.e. it has an eigenvalue at 1, but is not the identity) with

eigenvector u, show that (ũ, b̃u) is a limit point.

(v) Show that if Γ has no free subgroup of two generators, then all hy-
perbolic and regular parabolic elements of Γ have a common eigen-
vector. Conclude that all such elements lie in a solvable subgroup
of Γ.

(vi) Show that if an element g ∈ SL2(Z) is neither hyperbolic nor regular
parabolic, and is not a multiple of the identity, then g is conjugate
to a rotation by π/2 (in particular, g2 = −1).

(vii) Establish Theorem 6.1.1. (Hint: show that two square roots of −1
in SL2(Z) cannot multiply to another square root of −1.)

Now we prove Theorem 6.1.2. Let Γ be a free subgroup of SL2(Z) gen-
erated by two generators x, y. Let µ := 1

4(δx + δx−1 + δy + δy−1) be the
probability measure generating a random walk on SL2(Z), thus (πp)∗µ is
the corresponding generator on SL2(Fp). By Corollary 6.0.6, it thus suffices
to show that

(6.3) sup
B

((πp)∗µ)(n)(B) < p−κ

for all sufficiently large p, some absolute constant κ > 0, and some even n =
O(log p) (depending on p, of course), where B ranges over Borel subgroups.

As πp is a homomorphism, one has ((πp)∗µ)(n)(B) = (πp)∗(µ
∗n)(B) =

µ∗n(π−1
p (B)) and so it suffices to show that

sup
B
µ∗n(π−1

p (B)) < p−κ.

To deal with the supremum here, we will use an argument of Bourgain and
Gamburd [BoGa2008], taking advantage of the fact that all Borel groups
of SL2 obey a common group law, the point being that free groups such as
Γ obey such laws only very rarely. More precisely, we use the fact that the
Borel groups are solvable of derived length two; in particular we have

(6.4) [[a, b], [c, d]] = 1

for all a, b, c, d ∈ B. Now, µ∗n is supported on matrices in SL2(Z) whose
coefficients have size O(exp(O(n))) (where we allow the implied constants
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to depend on the choice of generators x, y), and so (πp)∗(µ
∗n) is supported

on matrices in SL2(Fp) whose coefficients also have size O(exp(O(n))). If n
is less than a sufficiently small multiple of log p, these coefficients are then
less than p1/10 (say). As such, if ã, b̃, c̃, d̃ ∈ SL2(Z) lie in the support of

µ∗n and their projections a = πp(ã), . . . , d = πp(d̃) obey the word law (6.4)

in SL2(Fp), then the original matrices ã, b̃, c̃, d̃ obey1 the word law (6.4) in
SL2(Z).

To summarise, if we let En,p,B be the set of all elements of π−1
p (B) that

lie in the support of µ∗n, then (6.4) holds for all a, b, c, d ∈ En,p,B. This
severely limits the size of En,p,B to only be of polynomial size, rather than
exponential size:

Proposition 6.1.3. Let E be a subset of the support of µ∗n (thus, E consists
of words in x, y, x−1, y−1 of length n) such that the law (6.4) holds for all
a, b, c, d ∈ E. Then |E| � n2.

The proof of this proposition is laid out in the exercise below.

Exercise 6.1.3. Let Γ be a free group generated by two generators x, y.
Let B be the set of all words of length at most n in x, y, x−1, y−1.

(i) Show that if a, b ∈ Γ commute, then a, b lie in the same cyclic
group, thus a = ci, b = cj for some c ∈ Γ and i, j ∈ Z.

(ii) Show that if a ∈ Γ, there are at most O(n) elements of B that
commute with a.

(iii) Show that if a, c ∈ Γ, there are at most O(n) elements b of B with
[a, b] = c.

(iv) Prove Proposition 6.1.3.

Now we can conclude the proof of Theorem 6.0.7:

Exercise 6.1.4. Let Γ be a free group generated by two generators x, y.

(i) Show that ‖µ∗n‖`∞(Γ) � cn for some absolute constant 0 < c < 1.
(For much more precise information on µ∗n, see [Ke1959].)

(ii) Conclude the proof of Theorem 6.0.7.

6.2. Random generators expand

We now prove Theorem 6.0.10. Let F2 be the free group on two formal
generators a, b, and let µ := 1

4(δa + δb + δa−1 + δb−1 be the generator of the
random walk. For any word w ∈ F2 and any x, y in a group G, let w(x, y) ∈
G be the element of G formed by substituting x, y for a, b respectively in

1This lifting of identities from the characteristic p setting of SL2(Fp) to the characteristic 0

setting of SL2(Z) is a simple example of the “Lefschetz principle”.
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the word w; thus w can be viewed as a map w : G × G → G for any group
G. Observe that if w is drawn randomly using the distribution µ∗n, and
x, y ∈ SL2(Fp), then w(x, y) is distributed according to the law µ̃∗n, where
µ̃ := 1

4(δx+δy+δx−1+δy−1). Applying Corollary 6.0.6, it suffices to show that
whenever p is a large prime and x, y are chosen uniformly and independently
at random from SL2(Fp), that with probability 1− op→∞(1), one has

(6.5) sup
B

Pw(w(x, y) ∈ B) ≤ p−κ

for some absolute constant κ, where B ranges over all Borel subgroups of
SL2(Fp) and w is drawn from the law µ∗n for some even natural number
n = O(log p).

Let Bn denote the words in F2 of length at most n. We may use the law
(6.4) to obtain good bound on the supremum in (6.5) assuming a certain
non-degeneracy property of the word evaluations w(x, y):

Exercise 6.2.1. Let n be a natural number, and suppose that x, y ∈
SL2(Fp) is such that w(x, y) 6= 1 for w ∈ B100n\{1}. Show that

sup
B

Pw(w(x, y) ∈ B)� exp(−cn)

for some absolute constant c > 0, where w is drawn from the law µ∗n. (Hint:
use (6.4) and the hypothesis to lift the problem up to F2, at which point
one can use Proposition 6.1.3 and Exercise 6.1.4.)

In view of this exercise, it suffices to show that with probability 1 −
op→∞(1), one has w(x, y) 6= 1 for all w ∈ B100n\{1} for some n comparable
to a small multiple of log p. As B100n has exp(O(n)) elements, it thus suffices
by the union bound to show that

(6.6) Px,y(w(x, y) = 1) ≤ p−γ

for some absolute constant γ > 0, and any w ∈ F2\{1} of length less than
c log p for some sufficiently small absolute constant c > 0.

Let us now fix a non-identity word w of length |w| less than c log p, and
consider w as a function from SL2(k)×SL2(k) to SL2(k) for an arbitrary field
k. We can identify SL2(k) with the set {(a, b, c, d) ∈ k4 : ad−bc = 1}. A rou-
tine induction then shows that the expression w((a, b, c, d), (a′, b′, c′, d′)) is
then a polynomial in the eight variables a, b, c, d, a′, b′, c′, d′ of degree O(|w|)
and coefficients which are integers of size O(exp(O(|w|))). Let us then make
the additional restriction to the case a, a′ 6= 0, in which case we can write
d = bc+1

a and d′ = b′c′+1
a′ . Then w((a, b, c, d), (a′, b′, c′, d′)) is now a rational

function of a, b, c, a′, b′, c′ whose numerator is a polynomial of degree O(|w|)
and coefficients of size O(exp(O(|w|))), and the denominator is a monomial
of a, a′ of degree O(|w|).
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We then specialise this rational function to the field k = Fp. It is
conceivable that when one does so, the rational function collapses to the
constant polynomial (1, 0, 0, 1), thus w((a, b, c, d), (a′, b′, c′, d′)) = 1 for all
(a, b, c, d), (a′, b′, c′, d′) ∈ SL2(Fp) with a, a′ 6= 0. (For instance, this would

be the case if w(x, y) = x| SL2(Fp)|, by Lagrange’s theorem, if it were not
for the fact that |w| is far too large here.) But suppose that this ratio-
nal function does not collapse to the constant rational function. Applying
the Schwarz-Zippel lemma (Exercise 5.4.3), we then see that the set of pairs
(a, b, c, d), (a′, b′, c′, d′) ∈ SL2(Fp) with a, a′ 6= 0 and w((a, b, c, d), (a′, b′, c′, d′)) =
1 is at most O(|w|p5); adding in the a = 0 and a′ = 0 cases, one still ob-
tains a bound of O(|w|p5), which is acceptable since |SL2(Fp)|2 ∼ p6 and
|w| = O(log p). Thus, the only remaining case to consider is when the ra-
tional function w((a, b, c, d), (a′, b′, c′, d′)) is identically 1 on SL2(Fp) with
a, a′ 6= 0.

Now we perform another “Lefschetz principle” maneuvre to change the
underlying field. Recall that the denominator of the rational function

w((a, b, c, d), (a′, b′, c′, d′))

is monomial in a, a′, and the numerator has coefficients of sizeO(exp(O(|w|))).
If |w| is less than c log p for a sufficiently small p, we conclude in particular
(for p large enough) that the coefficients all have magnitude less than p. As
such, the only way that this function can be identically 1 on SL2(Fp) is if
it is identically 1 on SL2(k) for all k with a, a′ 6= 0, and hence for a = 0 or
a′ = 0 also by taking Zariski closures.

On the other hand, we know that for some choices of k, e.g. k = R,
SL2(k) contains a copy Γ of the free group on two generators (see e.g. Ex-
ercise 2.3.1). As such, it is not possible for any non-identity word w to be
identically trivial on SL2(k)×SL2(k). Thus this case cannot actually occur,
completing the proof of (6.6) and hence of Theorem 6.0.10.

Remark 6.2.1. We see from the above argument that the existence of sub-
groups Γ of an algebraic group with good “independence” properties - such
as that of generating a free group - can be useful in studying the expan-
sion properties of that algebraic group, even if the field of interest in the
latter is distinct from that of the former. For more complicated algebraic
groups than SL2, in which laws such as (6.4) are not always available, it
turns out to be useful to place further properties on the subgroup Γ, for in-
stance by requiring that all non-abelian subgroups of that group be Zariski
dense (a property which has been called strong density), as this turns out
to be useful for preventing random walks from concentrating in proper al-
gebraic subgroups. See [BrGrTa2012] for constructions of strongly dense
free subgroups of algebraic groups and further discussion.



Chapter 7

Sieving and expanders

We now discuss how (a generalisation of) the expansion results obtained in
the preceding chapters can be used for some number-theoretic applications,
and in particular to locate almost primes inside orbits of thin groups, fol-
lowing the work of Bourgain, Gamburd, and Sarnak [BoGaSa2010]. We
will not attempt here to obtain the sharpest or most general results in this
direction, but instead focus on the simplest instances of these results which
are still illustrative of the ideas involved.

One of the basic general problems in analytic number theory is to lo-
cate tuples of primes of a certain form; for instance, the famous (and still
unsolved) twin prime conjecture asserts that there are infinitely many pairs
(n1, n2) in the line {(n1, n2) ∈ Z2 : n2 − n1 = 2} in which both entries are
prime. In a similar spirit, one of the Landau conjectures (also still unsolved)
asserts that there are infinitely many primes in the set {n2 +1 : n ∈ Z}. The
Mersenne prime conjecture (also unsolved) asserts that there are infinitely
many primes in the set {2n − 1 : n ∈ Z}, and so forth.

More generally, given some explicit subset V in Rd (or Cd, if one wishes),
such as an algebraic variety, one can ask the question of whether there are
infinitely many integer lattice points (n1, . . . , nd) in V ′ := V ∩ Zd in which
all the coefficients n1, . . . , nd are simultaneously prime; let us refer to such
points as prime points.

At this level of generality, this problem is impossibly difficult. Indeed,
even the much simpler problem of deciding whether the set V ′ is non-empty
(let alone containing prime points) when V is a hypersurface {x ∈ Rd :
P (x) = 0} cut out by a polynomial P is essentially Hilbert’s tenth problem,
which is known to be undecidable in general by Matiyasevich’s theorem (see
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e.g. [Ma1993]). So one needs to restrict attention to a more special class
of sets V , in which the question of finding integer points is not so difficult.
One model case is to consider orbits V ′ = V = Γb, where b ∈ Zd is a fixed
lattice vector and Γ is some discrete group that acts on Zd somehow (e.g.
Γ might be embedded as a subgroup of the special linear group SLd(Z), or
on the affine group SLd(Z) n Zd). In such a situation it is then quite easy
to show that V is large; for instance, V will be infinite precisely when the
stabiliser of b in Γ has infinite index in Γ.

Even in this simpler setting, the question of determining whether an or-
bit V = Γb contains infinitely prime points is still extremely difficult; indeed
the three examples given above of the twin prime conjecture, Landau con-
jecture, and Mersenne prime conjecture are essentially of this form (possibly
after some slight modification of the underlying ring Z, see [BoGaSa2010]
for details), and are all unsolved (and generally considered well out of reach
of current technology). Indeed, the list of non-trivial orbits V = Γb which
are known to contain infinitely many prime points is quite slim; Euclid’s
theorem on the infinitude of primes handles the case V = Z, Dirichlet’s the-
orem handles infinite arithmetic progressions V = aZ + r, and a somewhat
complicated result of Green, Tao, and Ziegler [GrTa2010, GrTa2012,
GrTaZi2012] handles “non-degenerate” affine lattices in Zd of rank two
or more (such as the lattice of length d arithmetic progressions), but there
are few other positive results known that are not based on the above cases
(though we will note the remarkable theorem of Friedlander and Iwaniec
[FrIw1998] that there are infinitely many primes of the form a2 + b4, and
the related result of Heath-Brown [He2001] that there are infinitely many
primes of the form a3 +2b3, as being in a kindred spirit to the above results,
though they are not explicitly associated to an orbit of a reasonable action
as far as I know).

On the other hand, much more is known if one is willing to replace the
primes by the larger set of almost primes - integers with a small number of
prime factors (counting multiplicity). Specifically, for any r ≥ 1, let us call
an r-almost prime an integer which is the product of at most r primes, and
possibly by the unit −1 as well. Many of the above sorts of questions which
are open for primes, are known for r-almost primes for r sufficiently large.
For instance, with regards to the twin prime conjecture, it is a result of Chen
[Ch1973] that there are infinitely many pairs p, p+2 where p is a prime and
p+2 is a 2-almost prime; in a similar vein, it is a result of Iwaniec [Iw1978]
that there are infinitely many 2-almost primes of the form n2 + 1. On the
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other hand, it is still open for any fixed r whether there are infinitely1 many
Mersenne numbers 2n − 1 which are r-almost primes.

The main tool that allows one to count almost primes in orbits is sieve
theory. The reason for this lies in the simple observation that in order to
ensure that an integer n of magnitude at most x is an r-almost prime, it
suffices to guarantee that n is not divisible by any prime less than x1/(r+1).
Thus, to create r-almost primes, one can start with the integers up to some
large threshold x and remove (or “sieve out”) all the integers that are mul-

tiples of any prime p less than x1/(r+1). The difficulty is then to ensure that
a sufficiently non-trivial quantity of integers remain after this process, for
the purposes of finding points in the given set V .

The most basic sieve of this form is the sieve of Eratosthenes, which
when combined with the inclusion-exclusion principle gives the Legendre
sieve (or exact sieve), which gives an exact formula for quantities such as
the number π(x, z) of natural numbers less than or equal to x that are not
divisible by any prime less than or equal to a given threshold z. Unfortu-
nately, when one tries to evaluate this formula, one encounters error terms
which grow exponentially in z, rendering this sieve useful only for very small
thresholds z (of logarithmic size in x). To improve the sieve level up to a

small power of x such as x1/(r+1), one has to replace the exact sieve by
upper bound sieves and lower bound sieves which only seek to obtain up-
per or lower bounds on quantities such as π(x, z), but contain a polynomial
number of terms rather than an exponential number. There are a variety
of such sieves, with the two most common such sieves being combinatorial
sieves (such as the beta sieve), based on various combinatorial truncations of
the inclusion-exclusion formula, and the Selberg upper bound sieve, based on
upper bounds that are the square of a divisor sum. (There is also the large
sieve, which is somewhat different in nature and based on L2 almost orthog-
onality considerations, rather than on any actual sieving, to obtain upper
bounds.) We will primarily work with a specific sieve in this chapter, namely
the beta sieve, and we will not attempt to optimise all the parameters of
this sieve (which ultimately means that the almost primality parameter r
in our results will be somewhat large). For a more detailed study of sieve
theory, see [HaRi1974], [IwKo2004], [FrIw2010].

Very roughly speaking, the end result of sieve theory is that excepting
some degenerate and “exponentially thin” settings (such as those associated
with the Mersenne primes), all the orbits which are expected to have a large
number of primes, can be proven to at least have a large number of r-almost

1For the superficially similar situation with the numbers 2n + 1, it is in fact believed (but

again unproven) that there are only finitely many r-almost primes for any fixed r (the Fermat
prime conjecture).
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primes for some2 finite r. One formulation of this principle was established
by Bourgain, Gamburd, and Sarnak [BoGaSa2010]:

Theorem 7.0.2 (Bourgain-Gamburd-Sarnak). Let Γ be a subgroup of SL2(Z)
which is not virtually solvable. Let f : Z4 → Z be a polynomial with inte-
ger coefficients obeying the following primitivity condition: for any positive
integer q, there exists A ∈ Γ ⊂ Z4 such that f(A) is coprime to q. Then
there exists an r ≥ 1 such that there are infinitely many A ∈ Γ with f(A)
non-zero and r-almost prime.

This is not the strongest version of the Bourgain-Gamburd-Sarnak the-
orem, but it captures the general flavour of their results. Note that the
theorem immediately implies an analogous result for orbits Γb ⊂ Z2, in
which f is now a polynomial from Z2 to Z, and one uses f(Ab) instead of
f(A). It is in fact conjectured that one can set r = 1 here, but this is well
beyond current technology. For the purpose of reaching r = 1, it is very nat-
ural to impose the primitivity condition, but as long as one is content with
larger values of r, it is possible to relax the primitivity condition somewhat;
see [BoGaSa2010] for more discussion.

By specialising to the polynomial f :

(
a b
c d

)
→ abcd, we conclude as a

corollary that as long as Γ is primitive in the sense that it contains matrices
with all coefficients coprime to q for any given q, then Γ contains infinitely
many matrices whose elements are all r-almost primes for some r depending
only on Γ. For further applications of these sorts of results, for instance to
Appolonian packings, see bgs.

It turns out that to prove Theorem 7.0.2, the Cayley expansion results
in SL2(Fp) from the previous chapter are not quite enough; one needs a
more general Cayley expansion result in SL2(Z/qZ) where q is square-free
but not necessarily prime. The proof of this expansion result uses the same
basic methods as in the SL2(Fp) case, but is significantly more complicated
technically, and we will only discuss it briefly here. As such, we do not give a
complete proof of Theorem 7.0.2, but hopefully the portion of the argument
presented here is still sufficient to give an impression of the ideas involved.

7.1. Combinatorial sieving

In this section we set up the combinatorial sieve needed to establish Theo-
rem 7.0.2. To motivate this sieve, let us focus first on a much simpler model
problem, namely the task of estimating the number π(x, z) of natural num-
bers less than or equal to a given threshold x which are not divisible by any

2Unfortunately, there is a major obstruction, known as the parity problem, which prevents
sieve theory from lowering r all the way to 1; see [Ta2008, §2.10] for more discussion.
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prime less than or equal to z. Note that for z between
√
x and x, π(x, z) is

simply the number of primes in the interval (z, x]; but for z less than
√
x,

π(x, z) also counts some almost primes in addition to genuine primes. This
quantity can be studied quite precisely by a variety of tools, such as those
coming from multiplicative number theory; see for instance [GrSo2004] for
some of the most precise results currently known in this direction.

The quantity π(x, z) is easiest to estimate when z is small. For instance,
π(x, 1) is simply the number of natural numbers less than x, and so

π(x, 1) = x+O(1).

Similarly, π(x, 2) is the number of odd numbers less than x, and so

π(x, 2) =
1

2
x+O(1).

Carrying this further, π(x, 3) is the number of numbers less than x that are
coprime to 6, and so

π(x, 3) =
1

3
x+O(1)

(but note that the implied constant in the O(1) error is getting increasingly
large). Continuing this analysis, it is not hard to see that

π(x, z) = (
∏
p≤z

(1− 1

p
))x+Oz(1)

for any fixed z; note from Mertens’ theorem that

(7.1)
∏
p≤z

(1− 1

p
) =

eγ + o(1)

log z

leading to the heuristic approximation

π(x, z) ≈ eγ x

log z

where γ = 0.577 . . . is the Euler-Mascheroni constant. Note though that this
heuristic should be treated with caution when z is large; for instance, from
the prime number theorem we see that we have the conflicting asymptotic

π(x, z) = (1 + o(1))
x

log x

when
√
x ≤ z ≤ o(x). This is already a strong indication that one needs to

pay careful attention to the error terms in this analysis. (Indeed, many false
“proofs” of conjectures in analytic number theory, such as the twin prime
conjecture, have been based on a cavalier attitude to such error terms, and
their asymptotic behaviour under various limiting regimes.)



150 7. Sieving and expanders

Let us thus work more carefully to control the error term Oz(1). Write
P (z) :=

∏
p≤z p for the product of all the primes less than or equal to z (this

quantity is also known as the primorial of z). Then we can write

π(x, z) =
∑
n≤x

1(n,P (z))=1

where the sum ranges over natural numbers n less than x, and (n, P (z))
is the greatest common divisor of n and P (z). The function 1(n,P (z))=1 is

periodic of period P (z), and is equal to 1 on (
∏
p≤z(1−

1
p))P (z) of the residue

classes modulo P (z), which leads to the crude bound

(7.2) π(x, z) =

∏
p≤z

(1− 1

p
)

x+O(P (z)).

However, this error term is too large for most applications: from the prime
number theorem, we see that P (z) = exp((1 + o(1))z), so the error term
grows exponentially in z. In particular, this estimate is only non-trivial in
the regime z = O(log x).

One can do a little better than this by using the inclusion-exclusion
principle, which in this context is also known as the Legendre sieve. Consider
for instance π(x, 3), which counts the number of natural numbers n ≤ x
coprime to P (3) = 2 × 3. We can compute this quantity by first counting
all numbers less than x, then subtracting those numbers divisible by 2 and
by 3, and then adding back those numbers divisible by both 2 and 3. A
convenient way to describe this procedure in general is to introduce the
Möbius function µ(n), defined to equal (−1)k when n is the product of k
distinct primes for some k ≥ 0. The key point is that

(7.3) 1n=1 =
∑
d|n

µ(d)

for any natural number n, where d ranges over the divisors of n; indeed, this
identity can be viewed as an alternate way to define the Möbius function. In
particular, 1(n,P (z))=1 =

∑
d|P (z) µ(d)1d|n, leading to the Legendre identity

π(x, z) =
∑
d|P (z)

µ(d)
∑

n≤x;d|n

1.

The inner sum can be easily estimated as

(7.4)
∑

n≤x;d|n

1 =
x

d
+O(1);
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since P (z) has 2π(z) distinct factors, where π(z) is the number of primes less
than or equal to z, we conclude that

π(x, z) =
∑
d|P (z)

µ(d)
x

d
+O(2π(z)).

The main term here can be factorised as

(7.5)
∑
d|P (z)

µ(d)
x

d
= x

∏
p≤z

(1− 1

p
)

leading to the following slight improvement

π(x, z) =

∏
p≤z

(1− 1

p
)

x+O(2π(z))

to (7.2). Note from the prime number theorem that 2π(z) = O(exp(O(z/ log z))),
so this error term is asymptotically better than the one in (7.2); the bound
here is now non-trivial in the slightly larger regime z = O(log x log log x).
But this is still not good enough for the purposes of counting almost primes,
which would require z as large as a power of x.

To do better, we will replace the exact identity (7.3) by combinatorial
truncations

(7.6)
∑

d|n:d∈D−

µ(d) ≤ 1n=1 ≤
∑

d|n:d∈D+

µ(d)

of that identity, where n divides P (z) and D−,D+ are sets to be specified
later, leading to the upper bound sieve

(7.7) π(x, z) ≤
∑

d|P (z);d∈D+

µ(d)
x

d
+O(|D+|)

and the lower bound sieve

(7.8) π(x, z) ≥
∑

d|P (z);d∈D−

µ(d)
x

d
+O(|D−|).

The key point will be that D+ and D− can be chosen to be only polynomially
large in z, rather than exponentially large, without causing too much damage
to the main terms

∑
d|P (z);d∈D± µ(d)xd , which lead to upper and lower bounds

on π(x, z) that remain non-trivial for moderately large values of z (e.g.

z = x1/(r+1) for some fixed r).

We now turn to the task of locating reasonably small sets D+,D− obey-
ing (7.6). We begin with(7.3), which we rewrite as

(7.9) 1n=1 =
∑
d|P (z)

µ(d)1d|n
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for n a divisor of P (z). One can view the divisors of P (z) as a π(z)-
dimensional combinatorial cube, with the right-hand side in (7.9) being a
sum over that cube; the idea is then to hack off various subcubes of that
cube in a way that only serves to increase (for the upper bound sieve) or
decrease (for the lower bound sieve) that sum, until only a relatively small
portion of the cube remains.

We turn to the details. Our starting point will be the identity

(7.10)
∑

d|P (z):d=p1...pkd′,d′|P (pk)

µ(d)1d|n = (−1)k1n=p1...pk

whenever z ≥ p1 > p2 > . . . > pk are primes, which follows easily from
applying (7.3) to n/(p1 . . . pk) when p1, . . . , pk divide n. One can view the
left-hand side of (7.10) as a subsum of the sum in (7.9), and (7.10) implies
that this subsum is non-negative when k is even and non-positive when k
is odd. In particular, we see that (7.6) will hold when D+ is formed from
the “cube” {d : d|P (z)} by removing some disjoint “subcubes” of the form
{d = p1 . . . pkd

′ : d′|P (pk)} for z ≥ p1 > . . . > pk and k odd, and similarly
for D− but with k now required to be even instead of odd.

Observe that the subcube {d = p1 . . . pkd
′ : d′|P (pk)} consists precisely

of those divisors d of P (z) whose top k prime factors are p1, . . . , pk. We now
have the following general inequality:

Lemma 7.1.1 (Combinatorial sieve). Let z > 0. For each natural number
k, let Ak(p1, . . . , pk) be a predicate pertaining to k decreasing primes z ≥
p1 > . . . > pk (thus Ak(p1, . . . , pk) is either true or false for each choice of
p1, . . . , pk). Let D+ be the set of all natural numbers n|P (z) which, when
factored as n = p1 . . . pr for z ≥ p1 > . . . > pr, is such that Ak(p1, . . . , pk)
holds for all odd 1 ≤ k ≤ r. Similarly define D− by requiring k to be even
instead of odd. Then (7.6) holds for all n|P (z).

Proof. D+ is formed from {d : d|P (z)} by removing those subcubes of the
form {d = p1 . . . pkd

′ : d′|P (pk)} for z ≥ p1 > . . . > pk, k odd, and such
that Ak′(p1, . . . , pk′) holds for all odd 1 ≤ k′ < k but fails for k′ = k. These
subcubes are all disjoint, and so the claim for D+ follows from the preceding
discussion. Similarly for D−. �

This gives us the upper and lower bounds (7.7), (7.8) for π(x, z). To
make these bounds useful, we need to choose D± so that the partial sums∑

d|P (z);d∈D± µ(d)xd are close to∑
d|P (z)

µ(d)
x

d
= x

∏
p≤z

(1− 1

p
).
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To do this, one must select the predicates Ak(p1, . . . , pk) carefully. The best
choices for these predicates are not immediately obvious; but after much
trial and error, it was discovered that one fairly efficient choice is to let
Ak(p1, . . . , pk) be the predicate

p1 . . . pk−1p
β+1
k < y

for some moderately large parameter β ≥ 2 (we will eventually take β := 10)
and some parameter y := zs for some s > β to be optimised in later (we
will eventually take it to be almost as large as x). The use of this choice is
referred to as the beta sieve.

Let us now estimate the errors

(7.11)

∣∣∣∣∣∣
∑
d|P (z)

µ(d)
x

d
−

∑
d|P (z):d∈D±

µ(d)
x

d

∣∣∣∣∣∣ .
For sake of argument let us work with D−, as the D+ case is almost identical.
By the triangle inequality, we can bound this error by∑

k even

∑
∗

∣∣∣∣∣∣
∑

d=p1...pkd′:d′|P (pk)

µ(d)
x

d

∣∣∣∣∣∣
where k ranges over positive even integers, and

∑
∗ denotes a sum over

primes z ≥ p1 > . . . > pk ranges over primes such that

(7.12) p1 . . . pk′−1p
β+1
k′ < y

for all even k′ < k, but

(7.13) p1 . . . pk−1p
β+1
k ≥ y.

Since p1, . . . , pk ≤ z and y = zs, this in particular gives the bound

k ≥ s− β.
From (7.12) we have

p1 . . . pk′−1p
β
k′ < y

for all 1 ≤ k′ < k (not necessarily even); note that the case k′ = 1 follows
from the hypothesis y > zβ. We can rewrite this inequality as

y

p1 . . . pk′
>

(
y

p1 . . . pk′−1

)β−1
β

and hence by induction

y

p1 . . . pk′
> y

(β−1
β

)k
′−1

for all 1 ≤ k′ < k. From (7.13) we then have

pk > y
1

β+1
(β−1
β

)k−1

> y
1
β

(β−1
β

)k
> z

(β−1
β

)k
.
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We conclude that the error (7.11) is bounded by

∞∑
k=1

∑
z≥p1>...>pk>z

(
β−1
β

)k

∣∣∣∣∣∣
∑

d=p1...pkd′:d′|P (pk)

µ(d)
x

d

∣∣∣∣∣∣
in the D+; a similar argument also gives this bound in the D− case. The
inner sum can be computed as∣∣∣∣∣∣

∑
d=p1...pkd′:d′|P (pk)

µ(d)
x

d

∣∣∣∣∣∣ =
x

p1 . . . pk

∏
p<pk

(1− 1

p
)

and thus by Mertens’ theorem (7.1) and the bound pk > z
(β−1
β

)k
we have∣∣∣∣∣∣

∑
d=p1...pkd′:d′|P (pk)

µ(d)
x

d

∣∣∣∣∣∣� (
β

β − 1
)k

x

p1 . . . pk log z
.

We have thus bounded (7.11) by

� x

log z

∑
k≥s−β

(
β

β − 1

)k ∑
z≥p1>...>pk>z

(
β−1
β

)k

1

p1 . . . pk
.

The inner sum can be bounded by

1

k!

 ∑
z≥p>z(

β−1
β

)k

1

p


k

.

By another of Mertens’ theorems (or by taking logarithms of (7.1)) one has∑
z≥p>z(

β−1
β

)k

1

p
≤ k log

β

β − 1
+O(1)

and so (7.11) is bounded by

� x

log z

∑
k≥s−β

1

k!

(
k

β

β − 1
log

β

β − 1
+O(1)

)k
.

Using the crude bound k! ≥ kk

ek
(as can be seen by considering the kth term

in the Taylor expansion of ek) we conclude the bound

� x

log z

∑
k≥s−β

(
e

β

β − 1
log

β

β − 1
+O(

1

k
)

)k
.
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If β is large enough (β = 10 will suffice) then the expression e β
β−1 log β

β−1 is

less than 1/e; since (1 +O(1/k))k = O(1), this leads to the bound

� x

log z

∑
k≥s−β

e−k

which after summing the geometric series becomes

� e−s
x

log z

(allowing implied constants to depend on β). From this bound on (7.11)
and (7.5), (7.1) we have∑

d|P (z):d∈D±

µ(d)
x

d
=

x

log z
(eγ +O(e−s) + o(1)).

Finally, if d = p1 . . . pk is an element of D±, then by (7.12) and the
hypothesis β ≥ 2 we have

d = p1 . . . pk ≤ y

and so we have the crude upper bounds |D±| ≤ y. From (7.7), (7.8) and
recalling that y = zs, we thus have

π(x, z) =
x

log z
(eγ +O(e−s) + o(1)) +O(zs).

If x > z11, we may optimise in s by setting s := log x
log z − 1 (in order to make

the final error term much less than x), leading to the bound

π(x, z) =
x

log z
(eγ +O(e− log x/ log z) + o(1)).

In particular, we have

(7.14)
x

log z
� π(x, z)� x

log z

whenever 2 ≤ z ≤ xε for some sufficiently small absolute constant ε > 0.

Remark 7.1.2. The bound (7.14) implies, among other things, that there
exists an absolute constant r such that the number of r-almost primes less
than x is � x/ log x, which is a very weak version of the prime number
theorem. Note though that the upper bound in (7.14) does not directly
imply a corresponding upper bound on this count of r-almost primes, be-
cause r-almost primes are allowed to have prime factors that are less than
x. Indeed, a routine computation using Mertens’ theorem shows that for
any fixed r, the number of r-almost primes less than x is comparable to
x

log x(log log x)r−1.

We can generalise the above argument as follows:



156 7. Sieving and expanders

Exercise 7.1.1 (Beta sieve). Let an be an absolutely convergent sequence of
non-negative reals for n ≥ 1. Let x > 1, κ ≥ 1, and ε > 0. Let g : N→ R+

be a multiplicative function taking values between 0 and 1, with g(p) < 1
for all primes p. Assume the following axioms:

(i) (Control in arithmetic progressions) For any d ≤ xε, one has∑
n:d|n

an = g(d)x+O(x1−ε).

(ii) (Mertens type theorem) For all 2 ≤ z ≤ xε, one has

(7.15)
1

logκ z
�
∏
p≤z

(1− g(p))� 1

logκ z
.

Conclude that there is an ε′ > 0 depending only on κ, ε, and the implied
constants in the above axioms, such that

x

logκ z
�

∑
n:(n,P (z))=1

an �
x

logκ z

whenever 2 ≤ z ≤ xε
′
, and the implied constants may depend on κ, ε, and

the implied constants in the above axioms. (Note that (7.14) corresponds
to the case when κ := 1, g(n) := 1/n, and an := 1n≤x.)

Exercise 7.1.2. Suppose we have the notation and hypotheses of the pre-
ceding exercise, except that the estimate (7.15) is replaced by the weaker
bound

(7.16) g(p) ≤ κ

p
+O(

1

p2
)

for all sufficiently large p. (For small p, note that we still have the bound
g(p) < 1.) Show that we still have the lower bound∑

n:(n,P (z))=1

an �
x

logκ z

whenever 2 ≤ z ≤ xε
′

for sufficiently small ε′ (which may depend on g),
where the implied constant is now allowed to depend on g. (Hint: the main
trick here is to extract out a common factor of

∏
p≤z(1 − g(p)) from the

analysis first, and then use the bound (7.16) to upper bound quantities such
as
∏
pk≤p≤z(1− g(p))−1.)

One can weaken the axioms somewhat and still obtain non-trivial re-
sults from the beta sieve, but this somewhat crude version of the sieve will
suffice for our purposes. Another, more abstract, formalisation of the above
argument (involving a construction of sets D± obeying (7.6) and a number
of other desirable properties) is sometimes referred to as the fundamental
lemma of sieve theory ; see e.g. [FrIw2010].
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Exercise 7.1.3 (Twin almost primes). Let π2(x, z) be the number of inte-
gers n between 1 and x such that n and n+ 2 are both coprime to P (z).

(i) Show that
x

log2 z
� π2(x, z)� x

log2 z

if 2 ≤ z ≤ xε, and ε > 0 is a sufficiently small absolute constant.

(ii) Show that there exists an r ≥ 1 such that there are infinitely many
pairs n, n + 2 which are both r-almost primes. (Indeed, the argu-
ment here allows one to take r = 20 without much effort, and by
working considerably harder to optimise everything, one can lower
r substantially, although the parity problem mentioned earlier pre-
vents one from taking r below 2.)

(iii) Establish Brun’s theorem that the sum of reciprocals of the twin
primes is convergent.

Exercise 7.1.4 (Landau conjecture for almost primes). Let π∗(x, z) be the
number of integers n between 1 and x such that n2 + 1 is coprime to P (z).

(i) Show that
x

log z
� π2(x, z)� x

log z

if 2 ≤ z ≤ xε, and ε > 0 is a sufficiently small absolute con-
stant. (Hint: you will need the fact that −1 is a quadratic residue
mod p if and only if p 6= 3 mod 4, and Merten’s theorem for
arithmetic progressions, which among other things asserts that∑

p≤x:p=1 mod 4
1
p = 1

2 log x+O(1).)

(ii) Show that there exists an r ≥ 1 such that there are infinitely natural
numbers n such that n2 + 1 is an r-almost primes.

Exercise 7.1.5. Let P : Z → Z be a polynomial with integer coefficients
and degree k. Assume that P is primitive in the sense that for each natural
number q, there exists a natural number n such that P (n) is coprime to q.
Show that there exists an r depending only on P such that for all sufficiently
large x, there are at least �P x/ logk x natural numbers n less than x such
that P (n) is an r-almost prime.

In many cases (e.g. if P is irreducible) one can decrease the power of
log x here (as in Exercise 7.1.4), by using tools such as Landau’s prime ideal
theorem; see [Ta2013c, §7.3] for some related discussion.

Remark 7.1.3. The combinatorial sieve is not the only type of sieve used
in sieve theory. Another popular choice is the Selberg upper bound sieve,
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in which the starting point is not the combinatorial inequalities (7.6), but
rather the variant

1n=1 ≤ (
∑
d|n

λd)
2

where the λd are arbitrary real parameters with λ1 := 1, typically supported
up to some level d < y. By optimising the choice of weights λd, the Sel-
berg sieve can lead to upper bounds on quantities such as π(x, z) which are
competitive with the beta sieve (particularly when z is moderately large),
although it is more difficult for this sieve to produce matching lower bounds.
A somewhat different type of sieve is the large sieve, which does not upper
bound or lower bound indicator functions such as 1n=1 directly, but rather
controls the size of a function that avoids many residue classes by exploit-
ing the L2 properties of these residue classes, such as almost orthogonality
phenomena or Fourier uncertainty principles. See [FrIw2010] for a much
more thorough discussion and comparison of these sieves.

7.2. The strong approximation property

For any natural number q, let πq : SL2(Z) → SL2(Z/qZ) be the obvious
projection homomorphism. An easy application of Bezout’s theorem (or the
Euclidean algorithm) shows that this map is surjective. From the Chinese
remainder theorem, we also have SL2(Z/qZ) ≡ SL2(Z/q1Z) × SL2(Z/q2Z)
whenever q = q1q2 and q1, q2 are coprime.

To set up the sieve needed to establish Theorem 7.0.2, we need to un-
derstand the images πq(Γ) of a non-virtually-solvable subgroup Γ of SL2(Z).
Clearly this is a subgroup of SL2(Z/qZ). Given that Γ is fairly “large” (in
particular, such groups can be easily seen to be Zariski-dense in SL2), we
expect that in most cases πq(Γ) is in fact all of SL2(Z/qZ). This type belief
is formalised in general as the strong approximation property. We will not
prove the most general instance of this property, but instead focus on the
model case of SL2(Z/qZ) for q square-free, in which one can proceed by ad
hoc elementary arguments. The general treatment of the strong approxima-
tion property was first achieved in [MaVeWe1984] using the classification
of finite simple groups; a subsequent paper of Nori [No1987] gave an alter-
nate treatment that avoided the use of this classification.

In Remark 6.0.8 it was already observed that πp(Γ) = SL2(Z/pZ) for
all sufficiently large primes p. (Indeed, Γ did not need to be free for this
to hold; it was enough that Γ not be virtually solvable.) To extend from
the prime case to the (square-free) composite case, we will need some basic
group theory, and in particular the theory of composition factors.
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Define a composition series for a group G to be a finite sequence

{1} = H0 CH1 C . . .CHn = G

of subgroups, where each Hi is a normal subgroup of Hi+1, and the quotients
Hi+1/Hi are all simple3. The quotients Hi+1/Hi for i = 1, . . . , n − 1 are
referred to as the composition factors of this series.

Exercise 7.2.1. Show that every finite group has at least one composition
series.

A key fact about composition factors, known as the Jordan-Holder theo-
rem, asserts that, up to permutation and isomorphism, they are independent
of the choice of series:

Theorem 7.2.1 (Jordan-Holder theorem). Let

{1} = H0 CH1 C . . .CHn = G

and
{1} = K0 CK1 C . . .CKm = G

be two composition series of the same group G. Then there is a bijection
σ : {0, . . . , n − 1} → {0, . . . ,m − 1} such that for each i = 0, . . . , n − 1,
Hi+1/Hi is isomorphic to Kφ(i+1)/Kφ(i). (In particular, n and m must be
equal.)

Proof. By symmetry we may assume that n ≤ m. Fix 0 ≤ i < n. Let

πi : Hi+1 → Hi+1/Hi be the quotient map, and consider the groups A
(i)
j :=

πi(Hi+1 ∩ Kj) ≡ (Hi+1 ∩ Kj)/(Hi ∩ Kj) for j = 0, . . . ,m. These are an

increasing family of subgroups of Hi+1/Hi, with A
(i)
0 = {1} and A

(i)
m =

Hi+1/Hi. Since each Kj is a normal subgroup of Kj+1, we see that A
(i)
j is

a normal subgroup of A
(i)
j+1. As A

(i)
m is simple, this implies that there is a

unique element σ(i) of {0, . . . ,m − 1} such that A
(i)
j is trivial for j ≤ σ(i)

and A
(i)
j is equal to Hi+1/Hi for j > σ(i).

Now we claim that σ is a bijection. Suppose this is not the case. Since
n ≤ m, there thus exists j ∈ {0, . . . ,m − 1} which is not in the range of

σ. This implies that A
(i)
j = A

(i)
j+1 for all i. An induction on i then shows

that Hi ∩Kj = Hi ∩Kj+1 for all i, and thus Kj = Kj+1, contradicting the
assumption that Kj+1/Kj is simple.

Finally, fix i0 ∈ {0, . . . , n − 1}, and let j0 := σ(i0). Then we have

A
(i)
j0

= A
(i)
j0+1 for all i 6= i0, while A

(i0)
j0

= {1} and A
(i0)
j0+1 ≡ Hi0+1/Hi0 .

From this and induction we see4 that (Hi ∩Kj0+1)/(Hi ∩Kj0) is trivial for

3By convention, we do not consider the trivial group to be simple.
4Here we are basically relying on a special case of the Zassenhaus lemma.
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i ≤ i0 but isomorphic to Hi0+1/Hi0 for i > i0. In particular, Kj0+1/Kj0 is
isomorphic to Hi0+1/Hi0 , and the claim follows. �

In view of this theorem, we can assign to each finite group a set (or
more precisely, multiset) of composition factors of simple groups, which are
unique up to permutation and isomorphism. This is somewhat analogous to
how the fundamental theorem of arithmetic assigns to each positive integer
a multiset of prime numbers, which are unique up to permutation. (Indeed,
the latter can be viewed as the special case of the former in the case of cyclic
groups.)

Exercise 7.2.2. Show that for p ≥ 5 a prime, the composition factors of
SL2(Fp) are (up to isomorphism and permutation) the cyclic group Z/2Z
and the projective special linear group P SL2(Fp). What happens instead
when p = 2 or p = 3?

Also, show that the only normal subgroup of SL2(Fp) (other than the
trivial group and all of SL2(Fp)) is the center Z(SL2(Fp)) ≡ Z/2Z of the
group. Thus, we see (in contrast with the fundamental theorem of arith-
metic) that one cannot permute the composition factors arbitrarily.

Exercise 7.2.3. Let N be a normal subgroup of a finite group G. Show
that the set of composition factors of G is equal to (up to isomorphism, and
counting multiplicity) the union of the set of composition factors of N , and
the set of composition factors of G/N . In particular, the set of composition
factors of N and of G/N are subsets of the set of composition factors of G
(again up to isomorphism, and counting multiplicity). As another corollary,
we see that the composition factors of a direct product G×H or semidirect
product GnH of two finite groups G,H is the union of the set of composition
factors of G and H separately (again up to isomorphism, and counting
multiplicity).

Knowing the composition factors of a group can assist in classifying its
subgroups; in particular, groups which are “coprime” in the sense of having
no composition factors in common are difficult to “join” together5. Here is
an example of this which will be of importance in our application:

Lemma 7.2.2. Let p ≥ 5 be a prime, and G be a finite group which does
not have a copy of P SL2(Fp) amongst its composition factors. Let H be a
subgroup of G×SL2(Fp) whose projections to G and SL2(Fp) are surjective.
Then H is all of G× SL2(Fp).

Proof. We apply Goursat’s lemma (see Exercise 7.2.4 below). Thus ifN1 :=
{g ∈ G : (g, 1) ∈ H} and N2 := {h ∈ SL2(Fp) : (1, h) ∈ H}, then N1, N2 are

5Interestingly, the phenomenon of “coprimality” implying “disjointness” also shows up in
ergodic theory, in the theory of joinings, but we will not discuss this further here.
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normal subgroups of G,SL2(Fp) respectively such that G/N1 is isomorphic
to SL2(Fp)/N2. From Exercise 7.2.2 we see that N2 is either trivial, all of
SL2(Fp), or is the center Z(SL2(Fp)).

If N2 is trivial, then SL2(Fp) is isomorphic to a quotient of G, and thus
by Exercise 7.2.3 the composition factors of SL2(Fp) are a subset of those
of G. But this is a contradiction, since P SL2(Fp) is a composition factor
of SL2(Fp) but not of G. Similarly if N2 is the center, since SL2(Fp)/N2

is then isomorphic to P SL2(Fp). So the only remaining case is when N2

is all of SL2(Fp). But then as H surjects onto G, we see that H is all of
G× SL2(Fp) and we are done. �

Exercise 7.2.4 (Goursat’s lemma). Let G1, G2 be groups, and let H be
a subgroup of G1 × G2 whose projections to G1, G2 are surjective. Let
N1 := {g1 ∈ G1 : (g1, 1) ∈ H} and N2 := {g2 ∈ G2 : (1, g2) ∈ H}. Show
that N1, N2 are normal subgroups of G1, G2, and that G1/N1 and G2/N2 are
isomorphic. (Indeed, after quotienting out by N1 ×N2, H becomes a graph
of such an isomorphism.) Conclude that the set of composition factors of H
are a subset of the union of the set of composition factors of G1 and the set
of composition factors of G2 (up to isomorphism and counting multiplicity,
as usual).

As such, we have the following satisfactory description of the images
πq(Γ) of a free group Γ:

Corollary 7.2.3 (Strong approximation). Let Γ be a subgroup of SL2(Z)
which is not virtually solvable. Let M ≥ 1 be an integer. Then there exists
a multiple q1 of M with the following property: whenever q is of the form
q = dp1 . . . pk with d|q1 and p1, . . . , pk distinct and coprime to q1, one has

πq(Γ) = πd(Γ)× SL2(Fp1)× . . .× SL2(Fpk)

(after using the Chinese remainder theorem to identify SL2(Fq) with SL2(Fd)×
SL2(Fp1)× . . .× SL2(Fpk)). In particular, one has

πq(Γ) = πd(Γ)× SL2(Z/p1 . . . pkZ).

The parameter M will not actually be needed in our application, but is
useful in the more general setting in which f has rational coefficients instead
of integer coefficients.

Proof. We already know that πp(Γ) = SL2(Fp) for all but finitely many
primes p. Let q0 be the product of M with all the eceptional primes, as
well as 2 and 3, thus p ≥ 5 and πp(Γ) = SL2(Fp) for all p coprime to
q0. By repeated application of Lemma 7.2.2 this implies that πp1...pk(Γ) =
SL2(Fp1) × . . . × SL2(Fpk) for any distinct primes p1, . . . , pk coprime to q0
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(the key point being that the groups P SL2(Fp) for primes p ≥ 5 are all
non-isomorphic to each other and to Z/2Z by cardinality considerations).

The finite group πq0(Γ) may contain copies of P SL2(Fp) amongst their
composition factors for a finite number of primes p coprime to q0; let q1 be
the product of q0 with all these primes. By many applications of Exercise
7.2.4, we see that the set of composition factors of πq1(Γ) are contained in the
union of the set of composition factors of πq0(Γ), and the set of composition
factors of πp(Γ) = SL2(Fp) for all p dividing q1 but not q0. As a consequence,
we see that P SL2(Fp) is not a composition factor of πq1(Γ) for any p coprime
to q1; by Exercise 7.2.3, P SL2(Fp) is also not a composition factor of πd(Γ)
for any d dividing q1 and p coprime to q1. By many applications of Lemma
7.2.2, we then obtain the claim. �

As a simple application of the above corollary, we observe that we may
reduce Theorem 7.0.2 to the case when Λ is a free group on two generators.
Indeed, if Λ is not virtually solvable, then by the Tits alternative (Theorem
6.1.1)), Λ contains a subgroup Λ′ which is a free group on two generators
(and in particular, continues to not be virtually solvable). Now the polyno-
mial f need not be primitive on Λ′, so we cannot deduce Theorem 7.0.2 for
Λ, f from its counterpart for Λ′, f . However, by Corollary 7.2.3 we have an
integer q1 ≥ 1 such that

(7.17) πq(Γ
′) = πd(Γ

′)× SL2(Z/p1 . . . pkZ)

whenever q = dp1 . . . pk with d|q1 and p1, . . . , pk are distinct primes coprime
to q1.

As f is primitive with respect to Λ, we may find a ∈ Γ such that f(a)
is coprime to q1. By translating f by a, we obtain a new polynomial f ′

for which f ′(1) is coprime to q1. In particular, for any d|q1, we have f ′(1)
coprime to d. By (7.17), this implies that for any square-free q (and hence
for arbitrary q), we can find a ∈ Γ′ with f ′(a) coprime to q. Thus f ′ is
primitive with respect to Λ′, and so we may deduce Theorem 7.0.2 for Λ, f
from its counterpart for Λ′, f ′.

7.3. Sieving in thin groups

We can now deduce Theorem 7.0.2 from the following expander result:

Theorem 7.3.1 (Uniform expansion). Let a, b generate a free group Λ in
SL2(Z). Then, as q runs through the square-free integers, Cay(πq(Λ), πq({a, b, a−1, b−1}))
form a two-sided expander family.

When q is restricted to be prime, this result follows from Theorem 6.0.7.
The extension of this theorem to non-prime q is more difficult, and will be
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discussed later. For now, let us assume Theorem 7.3.1 and see how we can
use it, together with the beta sieve, to imply Theorem 7.0.2.

As discussed in the preceding section, to show Theorem 7.0.2 we may
assume without loss of generality that Λ is a free group on two generators
a, b. Let µ := 1

4(δa + δb + δa−1 + δb−1) be the generator of the associated

random walk, and let T be a large integer. Then µ(T ) will be supported
on elements of Λ whose coefficients have size O(exp(O(T ))), where we allow
implied constants to depend on a, b. In particular, for x in this support, f(x)
will be an integer of size O(exp(O(T ))), where we allow implied constants to

depend on f also. On the other hand, µ(T ) has an `∞ norm that decreases
exponentially in T (by Exercise 6.1.4). If we then set z := exp(ε′T ) for a
sufficiently small absolute constant ε′ > 0, it will then suffice to show that
with probability � T−O(1), an element x drawn from Λ with distribution
µ(T ) is such that f(x) is non-zero and coprime to P (z).

It will be convenient to knock out a few exceptional primes. From Corol-
lary 7.2.3, we may find an integer q1 with the property that

πq(Γ) = πd(Γ)× SL2(Fp1)× . . .× SL2(Fpk)

whenever q = dp1 . . . pk with d|q1 and p1, . . . , pk distinct and coprime to q1.
As f is primitive, we may find a residue class x1 ∈ πq1(Γ) such that f(x1)
is coprime to q1. For each integer n, let an denote the quantity

an :=
∑

x∈Λ:f(x)=n;x=x1 mod q1

µ(T )(x).

It will suffice to show that ∑
n:(n,P (z))=1

an � T−O(1).

To do this, we will use the beta sieve. Indeed, by Exercise 7.1.2 it suffices
to establish a bound of the form

(7.18)
∑
n:d|n

an =
1

|πq1(Λ)|
g(d) +O(exp(−εT ))

for all square-free 1 ≤ d ≤ exp(εT ), some constant ε > 0, and some multi-
plicative function g obeying the bounds

g(p) < 1

and

g(p)� 1/p

for all primes p.

By choice of x1, the quantity an vanishes whenever n is not coprime to
q1. So we will set g(p) = 0 for the primes p dividing q1, and it will suffice to
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establish (7.18) for d coprime to q1. The left-hand side of (7.18) can then
be expressed as ∑

x∈πd(Λ):f(x)=0

((πq1d)∗µ)(T )(x1, x),

where we descend the polynomial f : SL2(Z)→ Z to a polynomial f : SL2(Z/dZ)→
Z/dZ in the obvious fashion. However, in view of Theorem 7.3.1 (and the
random walk interpretation of expansion), we have

((πq1d)∗µ)(T )(x) = |πq1d(Λ)|−1 +O(exp(−cT ))

for some c > 0 independent of ε. Note that

|πd(Λ)| ≤ | SL2(Z/dZ)| � dO(1) � exp(O(εT ))

while from Corollary 7.2.3 we have

|πq1d(Λ)| = |πq1(Λ)||πd(Λ)|
and thus ∑

n:d|n

an =
1

|πq1(Λ)|
g(d) +O(exp(−εT ))

for ε > 0 small enough, where g(d) is defined for d coprime to q1 as

g(d) :=
1

|πd(Γ)|
|{x ∈ SL2(Z/dZ) : f(x) = 0}|.

As f is primitive, we have g(d) < 1 for all such d; from Corollary 7.2.3 we see
that g is multiplicative for such d. Finally, from the Schwarz-Zippel lemma
(see Exercise 5.4.3) we have

g(p)� 1/p

and Theorem 7.0.2 follows.

Remark 7.3.2. One can obtain more precise bounds on g(p) using the Lang-
Weil theorem; see Section 9. Such results would however be needed if one
wanted more quantitative information than Theorem 7.0.2; see [BoGaSa2010]
for details.

It remains to establish Theorem 7.0.2. In the case when q is prime, this
was achieved in previous chapters using the ingredients of quasirandomness,
product theorems, and non-concentration. In [BoGaSa2010], these ingre-
dients were extendedto the square-free case by hand, which led to a fairly
lengthy argument. In the subsequent paper of Varju [Va2012], it was shown
that each of these ingredients can in fact be more or less automatically boot-
strapped from the prime case to the square-free case by using tools such as
the Chinese remainder theorem (or strong approximation) to “factor” the
latter case into copies of the former, thus simplifying the extension to the
square-free case significantly. We will not give the full argument here, but
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just to convey a taste of these sorts of product arguments, we will discuss
the product structure of just one of the three ingredients, namely quasiran-
domness. (The extension of this ingredient to the square-free setting was
already observed in [BoGaSa2010].)

As a consequence of Proposition 2.1.4, the following claim was shown:

Proposition 7.3.3. Let G be a |G|α-quasirandom finite group, S is a sym-
metric set of generators of G not containing the identity of cardinality k,
and µ = 1

|S|
∑

s∈S δs be such that

‖µ∗n‖`2(G) ≤ |G|−1/2+α/4

(say) for some n = O(log |G|) with µ := 1
|S|
∑

s∈S δs, then Cay(G,S) is

a two-sided ε-expander for some ε depending only on α, k and the implied
constants in the O() notation.

It turns out that this fact can be extended to product groups:

Proposition 7.3.4. Proposition 7.3.3 continues to hold if the hypothesis
that G is |G|α-quasirandom is replaced with the hypothesis that G = G1 ×
. . . × Gn for some n ≥ 0 and some finite groups G1, . . . , Gn, with each Gi
being |Gi|α-quasirandom.

The key point here is that the expansion constant ε does not depend on
the number n of groups in this factorisation.

Proof. (Sketch) For technical reasons it is convenient to allow S to have
multiplicity and to possibly contain the identity; this will require generalising
the notion of Cayley graph, and of expansion in such generalised graphs.

Let f be a non-constant eigenfunction of the adjacency operator, thus
f ∗ µ = λf for some real λ. The objective is to prove that |λ| ≤ 1 − ε for
some sufficiently small ε > 0 independent of n.

The claim n = 0 is trivial, so assume inductively that n ≥ 1 and that
the claim is proven for all smaller values of n (with a fixed choice of ε). For
each Gi, we can partition the eigenspaces of the adjacency operator into
those functions which are invariant in the Gi direction, and those functions
which have mean zero in each coset of Gi. These partitions are compatible
with each other as i varies (basically because the operations of averaging
in Gi and averaging in Gj commute). Thus, without loss of generality, we
may assume that the eigenfunction f is such that for each i, either f is
Gi-invariant, or has mean zero on each Gi coset.

Suppose that f was Gn-invariant, then the eigenvalue λ would also per-
sist after projecting S down from G to G1 ×Gn−1 (possibly picking up the
identity or some multiplicity in the process). The claim then follows from
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the induction hyopthesis. Similarly if f was Gi-invariant for any other value
of i. Thus we may assume that f has mean zero in each Gi coset.

One can show that every irreducible unitary representation of G splits
as a tensor product of irreducible unitary representations of the Gi. If one
lets V be the subspace of `2(G) spanned by f and its left translates, we
thus see that V contains at least one such tensor product; but as every
element of V will have mean zero in each Gi coset, the factors in this tensor
product will all be non-trivial. Using quasirandomness, the ith factor will
have dimension at least |Gi|α, and so V must have dimension at least |G|α.
At this point, one can use a trace formula to relate V to ‖µ∗n‖2`2(G) to

conclude the argument. �

Exercise 7.3.1. Develop the above sketch into a complete proof of the
proposition.
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Related articles





Chapter 8

Cayley graphs and the
algebra of groups

This is a sequel to the article “Cayley graphs and the geometry of groups”
from [Ta2013b, §2.3]. In that article, the concept of a Cayley graph of a
group G was used to place some geometry on that group G. In this chapter,
we explore a variant of that theme, in which (fragments of) a Cayley graph
on G is used to describe the basic algebraic structure of G, and in particular
on elementary word identities in G. Readers who are familiar with either
category theory or group cohomology will recognise these concepts lurking
not far beneath the surface; we wil remark briefly on these connections
later in this article. However, no knowledge of categories or cohomology is
needed for the main discussion, which is primarily focused on elementary
group theory.

Throughout this chapter, we fix a single group G = (G, ·), which is
allowed to be non-abelian and/or infinite. All our graphs will be directed,
with loops and multiple edges permitted.

In [Ta2013b, §2.3], we drew the entire Cayley graph of a group G. Here,
we will be working much more locally, and will only draw the portions of the
Cayley graph that are relevant to the discussion. In this graph, the vertices
are elements x of the group G, and one draws a directed edge from x to xg
labeled (or “coloured”) by the group element g for any x, g ∈ G; the graph
consisting of all such vertices and edges will be denoted Cay(G,G). Thus,
a typical edge in Cay(G,G) is as shown in Figure 1.

One usually does not work with the complete Cayley graph Cay(G,G).
It is customary to instead work with smaller Cayley graphs Cay(G,S), in

169
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Figure 1. An edge of a Cayley graph.

Figure 2. An edge of a Cayley graph with unlabeled vertices.

which the edge colours g are restricted to a smaller subset of G, such as a
set of generators for G. As we will be working locally, we will in fact work
with even smaller fragments of Cay(G,G) at a time; in particular, we only
use a handful of colours (no more than nine, in fact, for any given diagram),
and we will not require these colours to generate the entire group (we do
not care if the Cayley graph is connected or not, as this is a global property
rather than a local one).

Cayley graphs are left-invariant: for any a ∈ G, the left translation map
x 7→ ax is a graph isomorphism. To emphasise this left invariance, we will
usually omit the vertex labels, and leave only the coloured directed edge, as
in Figure 2.

This is analogous to how, in undergraduate mathematics and physics,
vectors in Euclidean space are often depicted as arrows of a given magni-
tude and direction, with the initial and final points of this arrow being of
secondary importance only. (Indeed, this depiction of vectors in a vector
space can be viewed as an abelian special case of the more general depiction
of group elements used in this article.)

Let us define a diagram to be a finite directed graph H = (V,E),
with edges coloured by elements of G, which has at least one graph ho-
momorphism into the complete Cayley graph Cay(G,G) of G; thus there
exists a map φ : V → G (not necessarily injective) with the property that
φ(w) = φ(v)g whenever (v, w) is a directed edge in H coloured by a group
element g ∈ G. Informally, a diagram is a finite subgraph of a Cayley graph
with the vertex labels omitted, and with distinct vertices permitted to rep-
resent the same group element. Thus, for instance, the single directed edge
displayed in Figure 2 is a very simple example of a diagram. An even sim-
pler example of a diagram would be a depiction of the identity element: see



8. Cayley graphs and the algebra of groups 171

Figure 3. The identity diagram.

Figure 4. Group multiplication.

Figure 3. We will however omit the identity loops in our diagrams in order
to reduce clutter.

We make the obvious remark that any directed edge in a diagram can
be coloured by at most one group element g, since y = xg, y = xh implies
g = h. This simple observation provides a way to prove group theoretic
identities using diagrams: to show that two group elements g, h are equal,
it suffices to show that they connect together (with the same orientation)
the same pair of vertices in a diagram.

Remark 8.0.5. One can also interpret these diagrams as commutative di-
agrams in a category in which all the objects are copies of G, and the
morphisms are right-translation maps. However, we will deviate somewhat
from the category theoretic way of thinking here by focusing on the geomet-
ric arrangement and shape of these diagrams, rather than on their abstract
combinatorial description. In particular, we view the arrows more as dis-
torted analogues of vector arrows, than as the abstract arrows appearing in
category theory.

Just as vector addition can be expressed via concatenation of arrows,
group multiplication can be described by concatenation of directed edges.
Indeed, for any x, g, h ∈ G, the vertices x, xg, xgh can be connected by the
triangular diagram in Figure 4. In a similar spirit, inversion is described by
the diagram in Figure 5.

We make the pedantic remark though that we do not consider a g−1

edge to be the reversal of the g edge, but rather as a distinct edge that just
happens to have the same initial and final endpoints as the reversal of the



172 8. Cayley graphs and the algebra of groups

Figure 5. Group inversion.

g edge. (This will be of minor importance later, when we start integrating
“1-forms” on such edges.)

A fundamental operation for us will be that of gluing two diagrams
together.

Lemma 8.0.6 ((Labeled) gluing). Let D1 = (V1, E1), D2 = (V2, E2) be two
diagrams of a given group G. Suppose that the intersection D1 ∩ D2 :=
(V1 ∩ V2, E1 ∩ E2) of the two diagrams connects all of V1 ∩ V2 (i.e. any
two elements of V1 ∩ V2 are joined by a path in D1 ∩D2). Then the union
D1 ∪D2 := (V1 ∪ V2, E1 ∪ E2) is also a diagram of G.

Proof. By hypothesis, we have graph homomorphisms φ1 : D1 → Cay(G,G),
φ2 : D2 → Cay(G,G). If they agree on D1 ∩ D2 then one simply glues
together the two homomorphisms to create a new graph homomorphism
φ : D1 ∪D2 → Cay(G,G). If they do not agree, one can apply a left trans-
lation to either φ1 or φ2 to make the two diagrams agree on at least one
vertex of D1∩D2; then by the connected nature of D1∩D2 we see that they
now must agree on all vertices of D1 ∩D2, and then we can form the glued
graph homomorphism as before. �

The above lemma required one to specify the label the vertices of D1, D2

(in order to form the intersection D1 ∩D2 and union D1 ∪D2). However, if
one is presented with two diagrams D1, D2 with unlabeled vertices, one can
identify some partial set of vertices of D1 with a partial set of vertices of D2

of matching cardinality. Provided that the subdiagram common to D1 and
D2 after this identification connects all of the common vertices together, we
may use the above lemma to create a glued diagram D.

For instance, if a diagram D contains two of the three edges in the
triangular diagram in Figure 4, one can “fill in” the triangle by gluing in
the third edge; see Figure 6.

One can use glued diagrams to demonstrate various basic group-theoretic
identities. For instance, by gluing together two copies of the triangular
diagram in Figure 4 to create the glued diagram in Figure 7. Filling in
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Figure 6. Filling in a triangle.

Figure 7. A partial demonstration of the associative law.

two more triangles, we obtain a tetrahedral diagram that demonstrates the
associative law (gh)k = g(hk): see Figure 8.

Similarly, by gluing together two copies of Figure 4 with three copies
of Figure 5 in an appropriate order, we can demonstrate the Abel identity
(gh)−1 = h−1g−1: see Figure 9.
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Figure 8. Completion of the proof of the associative law.

Figure 9. The Abel identity.

In addition to gluing, we will also use the trivial operation of erasing : if
D is a diagram for a group G, then any subgraph of D (formed by removing
vertices and/or edges) is also a diagram of G. This operation is not strictly
necessary for our applications, but serves to reduce clutter in the pictures.

If two group elements g, h commute, then we obtain a parallelogram as
a diagram, exactly as in the vector space case: see Figure 10.

In general, of course, two arbitrary group elements g, h will fail to com-
mute, and so this parallelogram is no longer available. However, various
substitutes for this diagram exist. For instance, if we introduce the con-
jugate gh := h−1gh of one group element g by another, then we have the
slightly distorted parallelogram in Figure 11.

By appropriate gluing and filling, this can be used to demonstrate the
homomorphism properties of a conjugation map g 7→ gh: see Figures 12 and
13.
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Figure 10. Two commuting group elements.

Figure 11. Two nearly commuting group elements.

Figure 12. A partial demonstration of the fact that conjugation is a homomorphism.

Another way to replace the parallelogram in Figure 10 is to introduce
the commutator [g, h] := g−1h−1gh of two elements, in which case we can
perturb the parallelogram into a pentagon: see Figure 14.
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Figure 13. Completion of the demonstration that conjugation is a homomorphism.

Figure 14. The commutator of two elements.

We will tend to depict commutator edges as being somewhat shorter
than the edges generating that commutator, reflecting1 a “perturbative” or
“nilpotent” philosophy. We will also be adopting a “Lie” perspective of
interpreting groups as behaving like perturbations of vector spaces, in par-
ticular by trying to draw all edges of the same colour as being approximately
(though not perfectly) parallel to each other (and with approximately the
same length).

1Of course, to fully reflect a nilpotent perspective, one should orient commutator edges in

a different dimension from their generating edges, but of course the diagrams drawn here do not
have enough dimensions to display this perspective easily.
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Figure 15. Relating the conjugate with the commtuator.

Figure 16. Relating two commutators together.

Gluing the above pentagon with the conjugation parallelogram and eras-
ing some edges, we discover a “commutator-conjugate” triangle, describing
the basic identity gh = g[g, h]: see Figure 15.

Other gluings can also give the basic relations between commutators
and conjugates. For instance, by gluing the pentagon in Figure 14 with its
reflection, we see that [g, h] = [h, g]−1. The diagram in Figure 16, obtained
by gluing together copies of Figures 11 and 15, demonstrates that [h, g−1] =

[g, h]g
−1

, while Figure 17 demonstrates that [g, hk] = [g, k][g, h]k.

Now we turn to a more sophisticated identity, the Hall-Witt identity

[[g, h], kg][[k, g], hk][[h, k], gh] = 1,

which is the fully noncommutative version of the more well-known Jacobi
identity for Lie algebras.

The full diagram for the Hall-Witt identity resembles a slightly truncated
parallelopiped. Drawing this truncated paralleopiped in full would result
in a rather complicated looking diagram, so I will instead display three
components of this diagram separately, and leave it to the reader to mentally
glue these three components back to form the full parallelopiped. The first
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Figure 17. Relating three commutators together.

component of the diagram is formed by gluing together three pentagons
from Figure 14, and is depicted in Figure 18. This should be thought of as
the “back” of the truncated parallelopiped needed to establish the Hall-Witt
identity.

While it is not needed for proving the Hall-Witt identity, we also observe
for future reference that we may also glue in some distorted parallelograms
and obtain a slightly more complicated diagram: see Figure 19.

To form the second component, let us now erase all interior components
of Figure 18 or Figure 19 to obtain Figure 20. Then we fill in three distorted
parallelograms: see Figure 21. This is the second component, and is the
“front” of the truncated parallelopiped, minus the portions exposed by the
truncation.

Finally, we turn to the third component. We begin by erasing the outer
edges from the second component in Figure 21 to obtain Figure 22, then
glue in three copies of the commutator-conjugate triangle from Figure 15 to
obtain Figure 23.

But now we observe that we can fill in three pentagons, and obtain a
small triangle with edges [[g, h], kg][[k, g], hk][[h, k], gh]:

Erasing everything except this triangle gives the Hall-Witt identity. Al-
ternatively, one can glue together Figures 18, 21, and 24 to obtain a trun-
cated parallelopiped which one can view as a geometric representation of
the proof of the Hall-Witt identity.

Among other things, I found these diagrams to be useful to visualise
group cohomology; I give a simple example of this below, developing an
analogue of the Hall-Witt identity for 2-cocycles.
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Figure 18. Back portion of the Hall-Witt identity.

8.1. A Hall-Witt identity for 2-cocycles

It is instructive to start interpreting the basic building blocks of group homol-
ogy and group cohomology in terms of these diagrams; among other things,
this interpretation highlights the close relationship between group cohomol-
ogy and other types of cohomology, such as simplicial cohomology and de
Rham cohomology. We will not do so systematically here, but present just
a small fragment of group cohomology in this setting, to give the flavour of
things.

To warm up, let’s begin with the easy theory of 1-cohomology. Fix some
coefficient ring U (e.g. the integers Z, the reals R, or a cyclic group such as
Z/2Z; for the elementary cohomology topics we will be presenting here, the
exact choice of the coefficient ring U will not be important). A 1-cochain
is just a map f : G → U . Using our diagram perspective, we can interpret
a 1-cochain in a “de Rham” way as a “1-form” that assigns the element∫
e f := f(g) of U to any oriented edge e in a diagram that has colour g. By

definition, we also define the integral
∫
−e f along the reversal of an oriented
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Figure 19. More detail of the back portion of the Hall-Witt identity.

edge e in a diagram by
∫
−e f := −

∫
e f . Note though that the integral along

a g−1 edge is not necessarily the negation of the integral along a g edge,
since we may have f(g−1) 6= −f(g). This explains the previous remark that
we do not view a g−1 edge as the reversal of a g edge. Similarly, since f(1)
need not equal 0, the integral of f on a loop need not be non-zero. Thus one
has to take a little bit of care with the analogy between group cohomology
and de Rham cohomology. However, if the 1-chain is normalised in the sense
that f(1) = 0 and f(g−1) = −f(g) (which is for instance the case with the
1-cocycles discussed below), then the analogy becomes more accurate.

Given any oriented path γ in a diagram consisting of a sequence e1, . . . , ek
of edges (which either are aligned with, or have the opposite orientation
from, the edge in the diagram), we can then define the “ line integral”

∫
γ f

of a 1-cochain f as the sum of the individual edge integrals
∫
e1
f, . . . ,

∫
ek
f .

A key point here is that of translation invariance; if two paths γ, γ′ are
translates of each other, in the sense that they have the same length and
the colours of their edges match, then they have the same line integral with
respect to f .
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Figure 20. The border between the front and back portions of the
Hall-Witt identity.

Remark 8.1.1. One can of course more generally integrate 1-cocycles against
1-chains, namely formal linear combinations of oriented edges with coeffi-
cients in U , which is the starting point for the diagrammatic interpretation
of group homology, but we will not use this formalism here.

A 1-cocycle is a 1-cochain f : G→ U which obeys the identity

f(g)− f(gh) + f(h) = 0

for all g, h ∈ G. Of course, this equation is nothing more than the assertion
that f is a group homomorphism from G to U ; but let us pretend that we
are unaware of this interpretation of 1-cocycles, and instead interpret the
1-cocycle condition diagramatically, as the fact that the line integral around
any triangle (Figure 4) vanishes. Because any closed loop in a diagram can
be triangulated (possibly after first filling in some more edges), we see more
generally that a 1-cocycle is nothing more than a 1-cochain which is closed
in the sense that its integral on any closed loop is zero. On the other hand,
we also have translation invariance of the 1-cocycle, which leads to some
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Figure 21. The front portions of the Hall-Witt identity, minus the centre.

additional cancellations. For instance, by integrating a 1-cocycle against
the pentagon in Figure 14, the contribution of the edges of matching colour
cancel each other out, leaving one with the conclusion that

(8.1) f([g, h]) = 0

for all g, h and any 1-cocycle f . Of course, this fact was already obvious from
the group homomorphism interpretation, but the point is that it can also
be observed “geometrically” by inspection of a relevant diagram. Similarly,
from Figure 11 we have f(g) = f(gh) for any g, h ∈ G and any 1-cocycle f .

Next, we define a 2-cochain to be a function ρ : G × G → U . Just as
1-cochains can be viewed as “1-forms” that can be integrated on oriented
edges and thus oriented paths, we can view 2-cochains as “2-forms” that can
be integrated on oriented triangles and thus triangulated surfaces, though
we make the technical restriction that our triangles must be of the form in
Figure 4, i.e. not all arrows are oriented in the same direction. We can then
interpret ρ(g, h) as the integral

∫
∆ ρ of ρ on the triangle in Figure 4, endowed

with the clockwise orientation; reversing the orientation of this triangle leads
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Figure 22. The inner front portions of the Hall-Witt identity.

to a negation of the integral. One can then integrate ρ on any oriented
triangulated surface (or, more generally, 2-chains, as mentioned previously)
in a diagram in the obvious fashion, provided that in each triangle, the
arrows are not all oriented in the same direction.

A 2-cocycle is a 2-cochain which obeys the identity

(8.2) ρ(g, h)− ρ(g, hk) + ρ(gh, k)− ρ(h, k) = 0

for all g, h, k ∈ G. As we will recall later, 2-cocycles can be viewed as
coordinatisations of central U -extensions of G, but we will again pretend
that we are unaware of this interpretation of 2-cocycles, and instead take
a diagrammatic interpretation (which has the advantage over the central
extension interpretation that it extends much more readily to higher orders
of cohomology than 2-cohomology). The cocycle identity (8.2) is then as-
serting that the integral of ρ on the tetrahedron in Figure 8 (or, in fact,
any other tetrahedron) vanishes. Because any closed oriented triangulated
2-surface on a diagram can be broken up into tetrahedra (again after filling
in some edges if necessary), we conclude that a 2-cocycle is nothing more
than a 2-cochain which is closed in the sense that its integral on any closed
triangulated 2-surface vanishes. Among other things, this now allows one
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Figure 23. More detail on the inner front portions of the Hall-Witt identity.

to define the integral
∫
S ρ of a 2-cocycle on any oriented surface S (not nec-

essarily closed or triangulated) which is bordered by some closed loop γ in
a diagram, by replacing S by some triangulated oriented surface with the
same oriented boundary γ as S. For instance, we can integrate a 2-cocycle
ρ on the pentagon P in Figure 14 with the counterclockwise orientation to
obtain an element

∫
P ρ of ρ; by selecting a suitable triangulation of this

pentagon, this integral can be expressed explicitly as

(8.3)

∫
P
ρ = ρ(h, g) + ρ(hg, [g, h])− ρ(g, h)

but we can choose other triangulations to obtain other representations of
the same integral, e.g.∫

P
ρ = −ρ(g, g−1h) + ρ(g−1h, g) + ρ(hg, [g, h]).

Again, a key point is translation invariance: if two surfaces S, S′ are trans-
lates of each other in the sense that their boundaries are translates of each
other, then their integrals against any 2-cocycle ρ will agree.
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Figure 24. The central portion of the Hall-Witt.

A special case of a 2-cocycle is a 2-coboundary, defined as a 2-cochain
df of the form

df(g, h) := f(g)− f(gh) + f(h)

for some 1-cochain f : G → U . In other words, the integral of df on any
(oriented) triangle such as that in Figure 4 is equal to the integral of f
on the boundary of that triangle, and more generally we have the “Stokes
theorem” ∫

S
df =

∫
∂S
f

for any oriented surface S in a diagram with boundary ∂S. One can quotient
the space Z2(G,U) of all 2-cocycles (which is a U -module) by the space of
all 2-coboundaries B2(G,U), leading to the 2-cohomology group H2(G,U),
which is then seen to be closely analogous to the 2-cohomology group in
either simplicial cohomology or de Rham cohomology. (One can of course
perform the same construction for any order. For instance, in the case of
1-cohomology, the space of 1-coboundaries turns out to be trivial in group
cohomology, and so the first cohomology group H1(G,U) is isomorphic to
the space Z1(G,U) of 1-cocycles, or in other words the space Hom(G,U) of
homomorphisms from G to U .)
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Figure 25. A triangle with a consistent arrow orientation.

Figure 26. A partition of the previous triangle.

We will need to integrate a 2-cocycle ρ on triangles ∆ in which all arrows
point in the same direction, as depicted in Figure 25.

This can be done by adding another point to decompose the triangle
into one which we can already integrate: see Figure 26.
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Thus we see (if we give ∆ the clockwise orientation) that

(8.4)

∫
∆
ρ = ρ(g, h) + ρ(1, g) + ρ(gh, (gh)−1);

of course, other expressions for
∫

∆ ρ are possible by performing other ori-
ented triangulations of Figure 25. In practice we can simplify these sorts of
expressions by normalising the 2-cocycle to the conditions

(8.5) ρ(1, g) = ρ(g, 1) = ρ(g, g−1) = 0

by subtracting the coboundary df , where f(g) := (ρ(g, g−1) + ρ(1, 1))/2; a
brief calculation using the cocycle equation (8.2) reveals that any 2-cocycle
will obey (8.5) after subtracting off df . When one achieves this normali-
sation, then the integral of ρ on the triangle ∆ is simply ρ(g, h); also, the
integral on triangles in which one of the edges is the identity is automatically
zero, and the integral on the loop in Figure 5 is also zero. Thus, 2-cocycles
which are normalised by (8.5) can be viewed as being quite analogous to
closed 2-forms in de Rham cohomology.

Now we apply the above formalism to the truncated parallelopiped used
to prove the Hall-Witt identity. We glue together Figures 18, 21, and 24
to obtain a closed 2-surface. If ρ is a 2-cocycle normalised by (8.5), the
integral on this surface vanishes. On the other hand, we see that there
is a lot of cancellation in this integral; in particular, all of the distorted
parallelograms and triangles that appear in Figure 18, also appear (with
the opposite orientation) in either Figure 21 or Figure 24. Cancelling out
these faces, we are left with the three distorted parallelograms in Figure 24,
together with the central triangle in Figure 24. Evaluating these integrals,
we conclude the Hall-Witt identity for (normalised) 2-cocycles:

(ρ(gh, [h, k]) + ρ(gh[h, k], [[h, k], gh])− ρ([h, k], gh))

+ (ρ(hk, [k, g]) + ρ(hk[k, g], [[k, g], hk])− ρ([k, g], hk))

+ (ρ(kg, [g, h]) + ρ(kg[g, h], [[g, h], kg])− ρ([g, h], kg))

− ρ([[h, k], gh], [[k, g], hk])

= 0.

Thus, for instance, if g, h and g, k commute (so that g, [h, k] also commute),
the Hall-Witt identity tells us that

ρ(g, [h, k]) = ρ([h, k], g),

or in other words that the integral of ρ on any parallelogram with edges
g, [h, k] vanishes. This can also be seen by noting how the Hall-Witt trun-
cated parallelopiped degenerates in the presence of so much commutativity.

The Hall-Witt identity for cocycles can also be derived from the group
extension interpretation of a 2-cocycle. Observe that if ρ : G ×G → U is a
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2-cocycle, then we can form a new group G′ whose elements are pairs (g, u)
with g ∈ G and u ∈ U , and whose group multiplication law is given by

(g, u)(h, v) := (gh, u+ v + ρ(g, h));

one can easily verify that this law is associative when ρ is a 2-cocycle, and
defines a group structure on G′ with identity (1,−ρ(1, 1)) and inverse map

(g, u)−1 := (g−1,−u− ρ(g, g−1)− ρ(1, 1)).

(If we normalise ρ to obey (8.5), then the identity simplifies to (1, 0), and
the inverse operation simplifies to (g, u)−1 = (g−1,−u).) The group G′ is
then a central group extension of G by U , and indeed it is not difficult to see
that all central group extensions of G by U arise in this manner (with the
extensions being isomorphic relative to the base group G if the underlying
2-cocycles differ by a 2-coboundary). One can then deduce the Hall-Witt
identity for cocycles ρ ∈ Z2(G,U) by applying the ordinary Hall-Witt iden-
tity to the elements (g, 0), (h, 0), (k, 0) in the extended group G′; we omit
the details. However, it appears that the group extension interpretation
of 2-cohomology does not easily extend to higher cohomology (unless per-
haps one works with more general notions than groups, such as n-groups),
whereas the simplicial approach given in this article has a more obvious
extension to higher cohomology.



Chapter 9

The Lang-Weil bound

Let F be a finite field, with algebraic closure F , and let V be an (affine)
algebraic variety defined over F , by which I mean a set of the form

V = {x ∈ F d : P1(x) = . . . = Pm(x) = 0}

for some ambient dimension d ≥ 0, and some finite number of polynomials

P1, . . . , Pm : F
d → F . In order to reduce the number of subscripts later

on, let us say that V has complexity at most M if d, m, and the degrees
of the P1, . . . , Pm are all less than or equal to M . Note that we do not
require at this stage that V be irreducible (i.e. not the union of two strictly
smaller varieties), or defined over F , though we will often specialise to these
cases later in this chapter. (Also, everything said here can also be applied
with almost no changes to projective varieties, but we will stick with affine
varieties for sake of concreteness.)

One can consider two crude measures of how “big” the variety V is.
The first measure, which is algebraic geometric in nature, is the dimension
dim(V ) of the variety V , which is an integer between 0 and d (or, depending
on convention, −∞, −1, or undefined, if V is empty) that can be defined in a
large number of ways (e.g. it is the largest r for which the generic linear pro-

jection from V to F
r

is dominant, or the smallest r for which the intersection
with a generic codimension r subspace is non-empty). The second measure,
which is number-theoretic in nature, is the number |V (F )| = |V ∩ F d| of
F -points of V , i.e. points x = (x1, . . . , xd) in V all of whose coefficients lie
in the finite field, or equivalently the number of solutions to the system of
equations Pi(x1, . . . , xd) = 0 for i = 1, . . . ,m with variables x1, . . . , xd in F .

189
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These two measures are linked together in a number of ways. For in-
stance, we have the basic Schwarz-Zippel type bound (which, in this quali-
tative form, goes back at least to [LaWe1954, Lemma 1]).

Lemma 9.0.2 (Schwarz-Zippel type bound). Let V be a variety of com-

plexity at most M . Then we have |V (F )| �M |F |dim(V ).

This lemma may be compared with Exercise 5.4.3, which gives a more
precise bound in the case that V is a hypersurface.

Proof. (Sketch) For the purposes of exposition, we will not carefully track
the dependencies of implied constants on the complexity M , instead sim-
ply assuming that all of these quantities remain controlled throughout the
argument1.

We argue by induction on the ambient dimension d of the variety V .
The d = 0 case is trivial, so suppose d ≥ 1 and that the claim has al-
ready been proven for d − 1. By breaking up V into irreducible com-
ponents we may assume that V is irreducible (this requires some control
on the number and complexity of these components, but this is available,
as discussed in [Ta2012, §2.1]). For each x1, . . . , xd−1 ∈ F , the fibre
{xd ∈ F : (x1, . . . , xd−1, xd) ∈ V } is either one-dimensional (and thus all
of F ) or zero-dimensional. In the latter case, one has OM (1) points in the
fibre from the fundamental theorem of algebra (indeed one has a bound of D

in this case), and (x1, . . . , xd−1) lives in the projection of V to F
d−1

, which
is a variety of dimension at most dim(V ) and controlled complexity, so the
contribution of this case is acceptable from the induction hypothesis. In the
former case, the fibre contributes |F | F -points, but (x1, . . . , xd−1) lies in a

variety in F
d−1

of dimension at most dim(V )− 1 (since otherwise V would
contain a subvariety of dimension at least dim(V ) + 1, which is absurd) and
controlled complexity, and so the contribution of this case is also acceptable
from the induction hypothesis. �

One can improve the bound on the implied constant to be linear in the
degree of V (see e.g. [DvKoLo2012, Claim 7.2], [ElObTa2010, Lemma
A.3], or the classical Schwarz-Zippel lemma [Sc1980], [Zi1979]), but we
will not be concerned with these improvements here.

1If one wished, one could obtain ineffective bounds on these quantities by an ultralimit argu-

ment, as discussed in [Ta2012, §2.1], or equivalently by moving everything over to a nonstandard
analysis framework; one could also obtain such uniformity using the machinery of schemes.
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Without further hypotheses on V , the above upper bound is sharp (ex-
cept for improvements in the implied constants). For instance, the variety

V := {(x1, . . . , xd) ∈ F
d

:

D∏
j=1

(xd − aj) = 0},

where a1, . . . , aD ∈ F are distict, is the union of D distinct hyperplanes of
dimension d− 1, with |V (F )| = D|F |d−1 and complexity max(D, d); similar
examples can easily be concocted for other choices of dim(V ). In the other
direction, there is also no non-trivial lower bound for |V (F )| without further
hypotheses on V . For a trivial example, if a is an element of F that does
not lie in F , then the hyperplane

V := {(x1, . . . , xd) ∈ F
d

: xd − a = 0}

clearly has no F -points whatsoever, despite being a d−1-dimensional variety

in F
d

of complexity d. For a slightly less non-trivial example, if a is an
element of F that is not a quadratic residue, then the variety

V := {(x1, . . . , xd) ∈ F
d

: x2
d − a = 0},

which is the union of two hyperplanes, still has no F -points, even though
this time the variety is defined over F instead of F (by which we mean
that the defining polynomial(s) have all of their coefficients in F ). There
is however the important Lang-Weil bound [LaWe1954] that allows for a
much better estimate as long as V is both defined over F and irreducible:

Theorem 9.0.3 (Lang-Weil bound). Let V be a variety of complexity at
most M . Assume that V is defined over F , and that V is irreducible as
a variety over F (i.e. V is geometrically irreducible or absolutely irre-
ducible). Then

|V (F )| = (1 +OM (|F |−1/2))|F |dim(V ).

Again, more explicit bounds on the implied constant here are known,
but will not be the focus of this chapter. As the previous examples show,
the hypotheses of definability over F and geometric irreducibility are both
necessary.

The Lang-Weil bound is already non-trivial in the model case d =
2,dim(V ) = 1 of plane curves:

Theorem 9.0.4 (Hasse-Weil bound). Let P : F
2 → F be an irreducible

polynomial of degree D with coefficients in F . Then

|{(x, y) ∈ F 2 : P (x, y) = 0}| = |F |+OD(|F |1/2).
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Thus, for instance, if a, b ∈ F , then the elliptic curve {(x, y) ∈ F 2 :

y2 = x3 + ax+ b} has |F |+O(|F |1/2) F -points, a result first established by
Hasse [Ha1936]. The Hasse-Weil bound is already quite non-trivial, being
the analogue of the Riemann hypothesis for plane curves. For hyper-elliptic
curves, an elementary proof (due to Stepanov) is discussed in [Ta2010b,
§2.5]. For general plane curves, the first proof was by Weil [We1949] (lead-
ing to his famous Weil conjectures); there is also a nice version of Stepanov’s
argument due to Bombieri [Bo1974] covering this case which is a little less
elementary (relying crucially on the Riemann-Roch theorem for the upper
bound, and a lifting trick to then get the lower bound), which I briefly
summarise later in this chapter. The full Lang-Weil bound is deduced from
the Hasse-Weil bound by an induction argument using generic hyperplane
slicing, as I will also summarise later in this chapter.

The hypotheses of definability over F and geometric irreducibility in the
Lang-Weil can be removed after inserting a geometric factor:

Corollary 9.0.5 (Lang-Weil bound, alternate form). Let V be a variety of
complexity at most M . Then one has

|V (F )| = (c(V ) +OM (|F |−1/2))|F |dim(V )

where c(V ) is the number of top-dimensional components of V (i.e. geomet-
rically irreducible components of V of dimension dim(V )) that are definable
over F , or equivalently are invariant with respect to the Frobenius endomor-
phism x 7→ x|F | that defines F .

Proof. By breaking up a general variety V into components (and using
Lemma 9.0.2 to dispose of any lower-dimensional components), it suffices
to establish this claim when V is itself geometrically irreducible. If V is
definable over F , the claim follows from Theorem 9.0.3. If V is not definable
over F , then it is not fixed by the Frobenius endomorphism Frob (since
otherwise one could produce a set of defining polynomials that were fixed
by Frobenius and thus defined over F by using some canonical basis (such
as a reduced Grobner basis) for the associated ideal), and so V ∩ Frob(V )
has strictly smaller dimension than V . But V ∩ Frob(V ) captures all the
F -points of V , so in this case the claim follows from Lemma 9.0.2. �

Note that if V is reducible but is itself defined over F , then the Frobenius
endomorphism preserves V itself, but may permute the components of V
around. In this case, c(V ) is the number of fixed points of this permutation
action of Frobenius on the components. In particular, c(V ) is always a
natural number between 0 and OM (1); thus we see that regardless of the

geometry of V , the normalised count |V (F )|/|F |dim(V ) is asymptotically
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restricted to a bounded range of natural numbers (in the regime where the
complexity stays bounded and |F | goes to infinity).

Example 9.0.6. Consider the variety

V := {(x, y) ∈ F 2
: x2 − ay2 = 0}

for some non-zero parameter a ∈ F . Geometrically (by which we basically
mean “when viewed over the algebraically closed field F”), this is the union
of two lines, with slopes corresponding to the two square roots of a. If a is a
quadratic residue, then both of these lines are defined over F , and are fixed
by Frobenius, and c(V ) = 2 in this case. If a is not a quadratic residue, then
the lines are not defined over F , and the Frobenius automorphism permutes
the two lines while preserving V as a whole, giving c(V ) = 0 in this case.

Corollary 9.0.5 effectively computes (at least to leading order) the number-
theoretic size |V (F )| of a variety in terms of geometric information about
V , namely its dimension dim(V ) and the number c(V ) of top-dimensional
components fixed by Frobenius. It turns out that with a little bit more
effort, one can extend this connection to cover not just a single variety V ,
but a family of varieties indexed by points in some base space W . More
precisely, suppose we now have two affine varieties V,W of bounded com-
plexity, together with a regular map φ : V → W of bounded complexity2.
It will be convenient to assume that the base space W is irreducible. If
the map φ is a dominant map (i.e. the image φ(V ) is Zariski dense in W ),
then standard algebraic geometry results tell us that the fibres φ−1({w}) are
an unramified family of dim(V ) − dim(W )-dimensional varieties outside of
an exceptional subset W ′ of W of dimension strictly smaller than dim(W )
(and with φ−1(W ′) having dimension strictly smaller than dim(V )); see e.g.
[Sh1997, §I.6.3].

Now suppose that V , W , and φ are defined over F . Then, by Lang-Weil,
W (F ) has (1 + O(|F |−1/2))|F |dim(W ) F -points, and by Schwarz-Zippel, for

all but O(|F |dim(W )−1) of these F -points w (the ones that lie in the sub-
variety W ′), the fibre φ−1({w}) is an algebraic variety defined over F of
dimension dim(V ) − dim(W ). By using ultraproduct arguments (see e.g.
[BrGrTa2011, Lemma 3.7]), this variety can be shown to have bounded

complexity, and thus by Corollary 9.0.5, has (c(φ−1({w}))+O(|F |−1/2)|F |dim(V )−dim(W )

F -points. One can then ask how the quantity c(φ−1({w}) is distributed. A
simple but illustrative example occurs when V = W = F and φ : F → F is
the polynomial φ(x) := x2. Then c(φ−1({w}) equals 2 when w is a non-zero
quadratic residue and 0 when w is a non-zero quadratic non-residue (and 1

2The definition of complexity of a regular map is a bit technical; see e.g. [BrGrTa2011] for

details. But one can think for instance of a polynomial or rational map of bounded degree as a
good example of a map of bounded complexity.
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when w is zero, but this is a negligible fraction of all w). In particular, in
the asymptotic limit |F | → ∞, c(φ−1({w}) is equal to 2 half of the time and
0 half of the time.

Now we describe the asymptotic distribution of the c(φ−1({w})). We
need some additional notation. Let w0 be an F -point in W\W ′, and let
π0(φ−1({w0})) be the connected components of the fibre φ−1({w0}). As
φ−1({w0}) is defined over F , this set of components is permuted by the
Frobenius endomorphism Frob. But there is also an action by monodromy
of the fundamental group π1(W\W ′) (this requires a certain amount of étale
machinery to properly set up, as we are working over a positive characteristic
field rather than over the complex numbers, but I am going to ignore this
rather important detail here). This fundamental group may be infinite,
but (by the étale construction) is always profinite, and in particular has a
Haar probability measure, in which every finite index subgroup (and their
cosets) are measurable. Thus we may meaningfully talk about elements
drawn uniformly at random from this group, so long as we work only with
the profinite σ-algebra on π1(W\W ′) that is generated by the cosets of the
finite index subgroups of this group (which will be the only relevant sets we
need to measure when considering the action of this group on finite sets,
such as the components of a generic fibre).

Theorem 9.0.7 (Lang-Weil with parameters). Let V,W be varieties of
complexity at most M with W irreducible, and let φ : V → W be a dom-
inant map of complexity at most M . Let w0 be an F -point of W\W ′.
Then, for any natural number a, one has c(φ−1({w})) = a for (P(X =

a) + OM (|F |−1/2))|F |dim(W ) values of w ∈ W (F ), where X is the random
variable that counts the number of components of a generic fibre φ−1(w0)
that are invariant under g ◦Frob, where g is an element chosen uniformly at
random from the étale fundamental group π1(W\W ′). In particular, in the
asymptotic limit |F | → ∞, and with w chosen uniformly at random from

W (F ), c(φ−1({w})) (or, equivalently, |φ−1({w})(F )|/|F |dim(V )−dim(W )) and
X have the same asymptotic distribution.

This theorem generalises Corollary 9.0.5 (which is the case when W
is just a point, so that φ−1({w}) is just V and g is trivial). Informally,
the effect of a non-trivial parameter space W on the Lang-Weil bound is to
push around the Frobenius map by monodromy for the purposes of counting
invariant components, and a randomly chosen set of parameters corresponds
to a randomly chosen loop on which to perform monodromy.

Example 9.0.8. Let V = W = F and φ(x) = xm for some fixed m ≥ 1; to
avoid some technical issues let us suppose that m is coprime to |F |. Then W ′

can be taken to be {0}, and for a base point w0 ∈W\W ′ we can take w0 = 1.
The fibre φ−1({1}) - the mth roots of unity - can be identified with the cyclic
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group Z/mZ by using a primitive root of unity. The étale fundamental group

π(W\W ′) = π(F\0) is (I think) isomorphic to the profinite closure Ẑ of the
integers Z (excluding the part of that closure coming from the characteristic
of F ). Not coincidentally, the integers Z are the fundamental group of the
complex analogue C\{0} of W\W ′. (Brian Conrad points out to me though
that for more complicated varieties, such as covers of F\{0} by a power of the
characteristic, the etale fundamental group is more complicated than just a
profinite closure of the ordinary fundamental group, due to the presence of
Artin-Schreier covers that are only ramified at infinity.) The action of this
fundamental group on the fibres Z/mZ can given by translation. Meanwhile,
the Frobenius map Frob on Z/mZ is given by multiplication bym. A random
element g ◦Frob then becomes a random affine map x 7→ |F |x+ b on Z/mZ,
where b chosen uniformly at random from Z/mZ. The number of fixed
points of this map is equal to the greatest common divisor (|F | − 1,m) of
|F | − 1 and m when b is divisible by (|F | − 1,m), and equal to 0 otherwise.
This matches up with the elementary number fact that a randomly chosen
non-zero element of F will be an mth power with probability 1/(|F |− 1,m),
and when this occurs, the number of mth roots in F will be (|F | − 1,m).

Example 9.0.9. (Thanks to Jordan Ellenberg for this example.) Consider
a random elliptic curve E = {y2 = x3 + ax + b}, where a, b are chosen
uniformly at random, and let m ≥ 1. Let E[m] be the m-torsion points
of E (i.e. those elements g ∈ E with mg = 0 using the elliptic curve
addition law); as a group, this is isomorphic to Z/mZ × Z/mZ (assuming
that F has sufficiently large characteristic, for simplicity), and consider the
number of F points of E[m], which is a random variable taking values in
the natural numbers between 0 and m2. In this case, the base variety W is
the modular curve X(1), and the covering variety V is the modular curve
X1(m). The generic fibre here can be identified with Z/mZ × Z/mZ, the
monodromy action projects down to the action of SL2(Z/mZ), and the
action of Frobenius on this fibre can be shown to be given by a 2× 2 matrix
with determinant |F | (with the exact choice of matrix depending on the
choice of fibre and of the identification), so the distribution of the number
of F -points of E[m] is asymptotic to the distribution of the number of fixed
points X of a random linear map of determinant |F | on Z/mZ× Z/mZ.

Theorem 9.0.7 seems to be well known “folklore” among arithmetic ge-
ometers, though I do not know of an explicit reference for it. It can be
derived from the ordinary Lang-Weil theorem and the moment method; see
below.

Many thanks to Brian Conrad and Jordan Ellenberg for helpful discus-
sions on these topics.
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9.1. The Stepanov-Bombieri proof of the Hasse-Weil bound

We now give (most of) the Stepanov-Bombieri proof of Theorem 9.0.4, fol-
lowing the exposition of Bombieri [Bo1974] (see also [Ko2010]), focusing
on the model case of curves of the form {(x, y) : yd = P (x)}). In this
section all implied constants are allowed to depend on the degree D of the
polynomial P (x, y).

Let C(F ) be the F -points of the curve C := {(x, y) ∈ F 2
: P (x, y) =

0}; the hypothesis that P is irreducible means that the curve C is also
irreducible. Our task is to establish the upper bound

(9.1) |C(F )| ≤ |F |+O(|F |1/2)

and the lower bound

(9.2) |C(F )| ≥ |F | −O(|F |1/2).

For technical reasons, we only prove these bounds directly when |F | is
a perfect square; the general case then follows by using the explicit formula
for C[Fpr ] as a function of r and the tensor power trick, as explained in
[Ta2008, §1.9].

Now we prove the upper bound. One uses Stepanov’s polynomial method.
The basic idea here is to bound the size of a finite set C(F ) by constructing
a non-trivial polynomial of controlled degree that vanishes to high order at
each point of C(F ). Stepanov’s original argument projected the curve C onto
an affine line F so that one could use ordinary one-dimensional polynomials,
but Bombieri’s approach works directly on the curve C. For this it becomes
convenient to work in the language of divisors of rational functions, rather
than zeroes of polynomials (and also it becomes slightly more convenient to
work projectively rather than affinely, though I will gloss over this minor
detail). Given a rational function f on the curve C (with coefficients in
F ) that is not identically zero or identically infinite on C, one can define
the divisor (f) to be the formal sum

∑
QmQQ of the zeroes and poles Q

of f on C, weighted by the multiplicity mQ of the zero or pole (with poles
being viewed as having negative multiplicity; one has to be a little careful
defining multiplicity at singular points of C, but this can be done by using a
sufficiently algebraic formalism). The irreducibility of C (which, of course,
must be used at some juncture to prove the Hasse-Weil bound) ensures that
this formal sum only has finitely many non-zero terms. One can show that
the total signed multiplicities of zeroes and poles of (f) always add up to
zero:

∑
QmQ = 0. (This generalises the fundamental theorem of algebra,

which is the case when C is a projective line.)

Fix a point P∞ of C (which one can think of as being at infinity), and
for each degree M , let L(MP∞) be the space of those rational functions
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f which are either zero, or have (f) ≥ −MP∞, i.e. f has a pole of order
M at P∞ but no other poles; this generalises the space of polynomials of
degree at most M , which corresponds to the case when C is a projective line
and P∞ is the point at infinity. It is easy to see that L(MP∞) is a vector
space (over F ), which is non-decreasing in M . In the case when C is a line,
this space clearly has dimension M + 1. The Riemann-Roch theorem is the
generalisation of this to the case of a general curve. In its most precise form,
it asserts the identity

dimL(MP∞) + dimL(K −MP∞) = M − g + 1

where g is the genus of C, and K is the canonical divisor of C (i.e. the
divisor of the canonical line bundle of C). For our application, we will
need two specific corollaries of the Riemann-Roch theorem, coming from the
non-negativity and monotonicity properties of L. The first is the Riemann
inequality

M − g + 1 ≤ dimL(MP∞) ≤M + 1

(so in particular dimL(MP∞) = M+O(1)), and the second is the inequality

dimL(MP∞) ≤ dimL((M + 1)P∞) ≤ dimL(MP∞) + 1

for all M . In particular, if we set N to be the set of all degrees M such that
dimL(MP∞) = dimL((M −1)P∞)+1, then N consists of all but at most g
elements of the natural numbers, and we can find a sequence {eM : M ∈ N}
of rational functions on C with eM ∈ dim(MP∞)\ dim((M−1)P∞) (i.e. eM
has a pole of order exactly M at P∞ and no other poles), with each L(MP∞)
being spanned by the fM ′ with M ′ ≤ M . The eM can be viewed as a
generalisation of the standard monomial basis 1, x, x2, . . . of the polynomials
of one variable. A key point here is that the degrees of this basis are all
distinct; this will be crucial later on for ensuring that the polynomial we
will be using for Stepanov’s method does not vanish identically.

We will not prove the Riemann-Roch theorem here, and simply assume
it (and its consequences) as a black box. (A proof may be found for instance

in [Gr1994, p. 245].) Next, we consider the Frobenius map Frob: F
2 → F

2

defined by Frob(x, y) := (x|F |, y|F |). As C is defined over F , this map
preserves C, and the fixed points of this map are precisely the F -points of
C.

The plan is now to find a non-trivial element f ∈ L(M∗P∞) for some
controlled M∗ that vanishes to order at least m at each fixed point of Frob
on C for some m. As the total number of zeroes and poles of f must agree,
this forces

m|C(F )| ≤M∗
and by optimising the parameters m,M∗ this should lead to (9.1).
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The trick is to pick rational functions f of a specific form, namely

(9.3) f(x, y) =
∑

M∈N :M≤M0

fM (x, y)meM (Frob(x, y))

where M0 is a parameter to be optimised later, and for each M , fM lies in
L(M1P∞) for another parameter M1 to be optimised in later. We also pick
m to divide |F |, thus m is a power of the characteristic p of F that is less than
or equal to |F |. There are several reasons to working with polynomials of
this form. The first is that because of the Frobenius endomorphism identity
eM (Frob(x, y)) = eM (x, y)|F |, and m divides |F | by hypothesis, each term in
f(x, y) is an mth power, and hence (since am+bm = (a+b)m in characteristic
p) f is itself the mth power of some rational function. As such, whenever f
vanishes at a point, it automatically vanishes to order at least m.

Secondly, in order for f to vanish at every fixed point of the Frobenius
map on C (and thus vanish to order m at each such point, by the above
discussion), it is of course sufficient that

(9.4)
∑

M∈N :M≤M0

fM (x, y)meM (x, y) = 0

where we view the left-hand side as a rational function in two indeterminates
x, y. This is a constraint on the fM which is linear over Fp (because the
map x 7→ xm is linear over Fp, though not over F ), and so we can try
to enforce this constraint by linear algebra. Note that if each fM lies in
L(M1P∞), then the rational function on the left-hand side of of (9.4) lies
in L((mM1 + M0)P∞), so the vanishing (9.4) imposes r dim(L((mM1 +
M0)P∞)) = r(mM1 +M0 +O(1)) homogeneous linear constraints (possibly
dependent) over Fp on the fM , where |F | =: pr. On the other hand, the
dimension (over Fp) of the space of all possible fM is

r|{M ∈ N : M ≤M0}|dim(M1P∞) = r(M0 +O(1))(M1 +O(1)).

Thus, by linear algebra, we can find a collection of fM ∈ L(M1P∞), not all
zero, obeying (9.4) as long as we have

(9.5) (M0 − C)+(M1 − C)+ > mM1 +M0 + C

We are not done yet, because even if the fM are are not all zero, it is
conceivable that the combined function (9.3) could still vanish. But observe
that if M is the largest index for which fM is non-zero, then the rational
function fM (x, y)meM (Frob(x, y)) has a pole of order at least M |F | at P∞,
and all the other terms have a pole of order at most (M − 1)|F | + mM1

(here it is crucial that the eM have poles of different orders at P∞, thanks
to Riemann-Roch). So as long as we have

(9.6) mM1 < |F |,
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we have that f does not vanish identically. As it vanishes to degree at least
m at every point of C(F ), and lies in L((mM1 + |F |M0)P∞), and so we
obtain the upper bound

|C(F )| ≤ mM1 + |F |M0

m
.

Now we optimise in the parameters m,M0,M1 subject to the constraints
(9.5), (9.6). As |F | is assumed to be a perfect square and is sufficiently
large, then a little work shows that one can satisfy the constraints with
m := |F |1/2, M1 := |F |1/2 − 1, and M0 := |F |1/2 + C ′ for some sufficiently
large C ′, leading to the desired bound (9.1).

Remark 9.1.1. When |F | is not a perfect square, but is not a prime, one
can still choose other values of m and obtain a weaker version of (9.1) that
is still non-trivial. But it is curious that Bombieri’s version of Stepanov’s
argument breaks down completely when F has prime order. As mentioned
previously, one can still recover this case a posteriori by the tensor product
trick, but this requires the explicit formula for |C[Fpr ]| which is not entirely
trivial (it relies again on the Riemann-Roch theorem, see e.g. [IwKo2004,
Ch. 11]). On the other hand, other versions of Stepanov’s argument do
work in the prime order case, so this obstruction may be purely artificial in
nature.

Now we need to pass from the upper bound (9.1) to the lower bound
(9.2). In model cases, such as curves of the form C = {(x, y) : yd = P (x)}
with d − 1 not divisible by the characteristic of F , one can proceed by ob-
serving that the multiplicative group F× foliates into d cosets g1H, . . . , gdH
of the subgroup H := {xd : x ∈ F×} of dth powers. Because of this, we see
that the union C ′ := C1 ∪ . . .∪Cd of the curves Ci := {(x, y) : giy

d = P (x)}
contains exactly d F -points on all but O(1) vertical lines {x = a}, a ∈ F ,
and hence the union has cardinality d|F |+O(1) F -points. (In other words,
the projection (x, y) 7→ x from C ′ to F is generically d-to-one. Also, as the
Ci are all dilations of C, they will be irreducible if C is, and thus by (9.1)

they each have at most |F | + O(|F |1/2) F -points; from subtracting all but
one of the curves from C1 ∪ . . . Cd we then see that each of the Ci has at
least |F | − O(|F |1/2) F -points also. As we can take one of the gi to be the
identity, the claim (9.2) follows in this case. The general case follows in a
similar fashion, using Galois theory to lifting a general curve C to another
curve C ′ whose projection to some coordinate line F has fixed multiplic-
ity (basically by ensuring that the function field of the former is a Galois
extension of the function field of the latter); see [Bo1974] for details.
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9.2. The proof of the Lang-Weil bound

Now we prove the Lang-Weil bound. We allow all implied constants to
depend on the complexity bound M , and will ignore the issues of how to
control the complexity of the various algebraic objects that arise in our
analysis (as before, one can obtain such bounds more or less “for free” from
an ultraproduct argument, if desired).

The proof proceeds by induction on the dimension dim(V ) of the variety
V . The first non-trivial case occurs at dimension one. If V is a plane curve
(so dim(V ) = 1, and the ambient dimension is 2), then the claim follows
directly from the Hasse-Weil bound. If V is a higher-dimensional curve, we
can use resultants to eliminate all but two of the variables (or, alternatively,
one can apply the primitive element theorem to the function field of the
curve), and convert the curve to a birationally equivalent (over F ) plane
curve, to reduce to the plane curve case (noting that the singular points of
the birational transformation only influence the number of F -points by O(1)
at most).

Now suppose inductively that dim(V ) ≥ 2, and that the claim has al-
ready been proven for irreducible varieties of dimension dim(V ) − 1. The
induction step is then based on the following two parallel facts about hyper-
plane slicing, the first in the algebraic geometric category, and the second
in the combinatorial category:

Lemma 9.2.1 (Bertini’s theorem). Let V be an irreducible variety in F
d

of
dimension at least two. Then, for a generic affine hyperplane H (over F ),
the slice V ∩H is an irreducible variety of dimension dim(V )− 1.

Lemma 9.2.2 (Random sampling). Let E be a subset of F d for some d =
O(1). Then, for a affine hyperplane H (defined over F ) chosen uniformly
at random, the random variable |E ∩ H| has mean |E|/|F | and variance
O(|E|/|F |). In particular, by Chebyshev’s inequality, the median value of

|E ∩H| is |E|/|F |+O((|E|/|F |)1/2).

Let us see how the two lemmas conclude the induction. There are
|F | |F |

d−1
|F |−1 = (1 + O(|F |−1))|F |d different affine hyperplanes H over F . The

set of hyperplanes H over F for which V ∩ H fails to be an irreducible
variety of dimension dim(V ) is, by Bertini’s theorem, a proper algebraic
variety in the Grassmannian space, which one can show to have bounded
complexity; and so by Lemma 9.0.2, only O(1/|F |) of all such hyperplanes
over F fall into this variety. For the remaining 1 − O(1/|F |) such hyper-
planes, we may apply the induction hypothesis and conclude that |V (F ) ∩
H| = (1 + O(|F |−1/2))|F |dim(V )−1. In particular, if H is an affine hyper-
plane chosen uniformly at random, then the median value of |V (F ) ∩H| is
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(1 + O(|F |−1/2))|F |dim(V )−1. But this is consistent with Lemma 9.2.2 only

when |V (F )| = (1 +O(|F |−1/2))|F |dim(V ), closing the induction.

Remark 9.2.3. One can also proceed without the variance bound in Lemma
9.2.2 by using Lemma 9.0.2 as a crude estimate for |V (F ) ∩H| for the ex-
ceptional H, after first making an easy reduction to the case where V (F )
is not already contained inside a single hyperplane. However, I think the
variance bound is illuminating, as it illustrates the concentration of measure
that occurs when |E| becomes much larger than |F |, which only occurs in
dimensions two and higher. In contrast, if one attempts to slice a curve by
a hyperplane, one typically gets zero or multiple points, so there is no con-
centration of measure and irreducibility usually fails. So the slicing method
can reduce the dimension of V down to one, but not to zero, so the need to
invoke Hasse-Weil cannot be avoided by this method.

We first show Lemma 9.2.2, which is a routine first and second moment
calculation. Any given point x in Fn lies in precisely 1/|F | of the hyperplanes
H, so summing in x we obtain E|E ∩H| = |E|/|F |. Next, any two distinct

points x, y in Fn lie in 1
|F |
|F |d−1−1
|F |d−1

= 1
|F |2 + O(|F |−d−1) of the hyperplanes

H, and so

E|E ∩H|2 = |E|/|F |+ |E|(|E| − 1)(
1

|F |2
+O(|F |−d−1))

= (E|E ∩H|)2 +O(|E|/|F |)
giving the variance bound.

Now we show Bertini’s theorem. A dimension count shows that the
space of pairs (p,H) where H is a hyperplane and p is a singular point of
V in H has dimension at most dim(V ) − 1 + d − 1, and so for a generic
hyperplane, the space of singular points of V in H is contained in a variety
of dimension at most dim(V )− 2. Similarly, the space of pairs (p,H) where
p is a smooth point of V and H is a hyperplane containing the tangent space
to V at p is at most dim(V ) + d− dim(V )− 1, and so the space of smooth
points of V in H whose tangent space is not transverse to a generic H also
has dimension at most dim(V )− 2. Thus, for generic H, the slice V ∩H is
a dim(V ) − 1-dimensional variety, which is generically comes from smooth
points of V whose tangent space is transverse to H. The remaining task
is to establish irreducibility for generic H. As irreducibility is an algebraic
condition, V ∩ H is either generically irreducible or generically reducible.
Suppose for contradiction that V ∩H is generically reducible. Consider the
set S of triples (p, q,H) where p, q are distinct smooth points of V , and
H is a hyperplane through p, q that is transverse to the tangent spaces of
both p and q, with H ∩ V reducible. This is a quasiprojective variety of
dimension d + (dim(V ) − 1) + (dim(V ) − 1). It can be decomposed into
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two top-dimensional components: one where p, q lie in the same component
of V ∩H, and one where they lie in distinct components. (The hypothesis
dim(V ) ≥ 2 is crucial to ensure that the first component is non-empty.)
As such, S is disconnected in the Zariski topology. On the other hand, for
fixed p, q, the set of all H contributing to S is connected, while the set of all
distinct smooth pairs p, q is also connected, and so S (and hence is closure)
is also connected, a contradiction.

Remark 9.2.4. See also [Gr1994, p. 174] for a slight variant of this argu-
ment (thanks to Jordan Ellenberg for pointing this out). In that reference, it
is also noted that the claim can also be derived from the Lefschetz hyperplane
theorem in the case that V is smooth.

9.3. Lang-Weil with parameters

Now we prove Theorem 9.0.7. Again we allow all implied constants to de-
pend on the complexity parameter M , and gloss over the task of making
sure that all algebraic objects have complexity OM (1).

We will proceed by the moment method. Observe that c(w) is a bounded
natural number random variable, so to show that c(w) has the asymptotic

distribution of X up to errors of 1 +O(|F |−1/2), it suffices to show that

Ew∈W (F )\W ′(F )c(w)k = EXk +O(|F |−1/2)

for any fixed natural number k = O(1), or equivalently (by the Lang-Weil
bound for W (F ) and for the fibres φ−1({w}))

(9.7)
∑

w∈W (F )\W ′(F )

|φ−1({w})(F )|k = (EXk +O(|F |−1/2))

×|F |dim(W )+k(dim(V )−dim(W )).

Fix k. We form the k-fold fibre product Vk of V over W\W ′, consisting of all
k-tuples (v1, . . . , vk) ∈ V k such that φ(v1) = . . . = φ(vk) lies in W\W ′. This
fibre product is a quasiprojective variety of dimension dim(W )+k(dim(V )−
dim(W )), is defined over F , and the left-hand side of (9.7) is precisely equal
to the number of F -points of Vk. Thus, by the Lang-Weil bound for Vk, it
suffices to show that

c(Vk) = EXk,

i.e. that Vk has precisely EXk top-dimensional components which are
Frobenius-invariant.

We will in fact prove a more general statement: if φ : U →W is any dom-
inant map which has smooth unramified fibres on W\W ′, then the number
c(U) of top-dimensional components of U that are Frobenius-invariant is
equal to the expected number of top-dimensional components of g ◦ Frob
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on a generic fibre φ−1({w0}), where g is selected uniformly at random from
π1(W\W ′). Specialising this to the fibre product Vk (noting that the generic
fibre of Vk is just the k-fold Cartesian power of the generic fibre of k, and
similarly for the action of Frobenius and the fundamental group), we obtain
the claim.

Now we prove this more general statement. By decomposing into ir-
reducible components, we may certainly assume that U is irreducible. If
U is not Frobenius-invariant, then Frob(U) is generically disjoint from U
and so there certainly can be no components of φ−1({w0}) that are fixed
by g ◦ Frob. Thus we may assume that U is Frobenius-invariant (i.e. de-
fined over F ). Then the situation becomes very close to that of Burnside’s
lemma. If there are K components S1, . . . , SK of φ−1({w0}), the connected-
ness of U implies that the fundamental group π1(W\W ′) acts transitively on
these components, and so for any single component Si and uniformly chosen
g ∈ π1(W\W ′), gSi will be uniformly distributed amongst the S1, . . . , SK ,
as will g(Frob(Si)). In particular, each Si has a 1/K chance of being a fixed
point of g ◦ Frob, so the expected number of fixed points of g ◦ Frob is 1 as
requred.

Exercise 9.3.1. Obtain the following extension of Corollary 9.0.7: if one
has k = O(1) different dominant maps φi : Vi → W of varieties Vi,W of
complexity O(1), with unramified, non-singular fibres on W\W ′, then the
joint distribution of c(φ−1

1 ({w})), . . . , c(φ−1
k ({w})) converges in distribution

to the joint distribution of X1, . . . , Xk, where each Xi is the number of fixed
points of g◦Frob on the components of a generic fibre, where g is independent
of i and drawn uniformly from π1(W\W ′).

Remark 9.3.1. While the moment computation is simple and cute, I would
be interested in seeing either a heuristic or rigorous explanation of Theo-
rem 9.0.7 (or Exercise 9.3.1) that did not proceed through moments. The
theorem seems to be asserting a statement roughly of the following form
(ignoring for now the fact that paths do not actually make much sense in
positive characteristic): if one takes a random path γ in W connecting two
random F -points, then the loop Frob(γ) − γ behaves as if it is distributed
uniformly in the fundamental group of π1(W ) (or π1(W\W ′), for any lower-
dimensional set W ′). But I do not know how to make this heuristic precise.





Chapter 10

The spectral theorem
and its converses for
unbounded self-adjoint
operators

Let L : H → H be a self-adjoint operator on a finite-dimensional Hilbert
space H. The behaviour of this operator can be completely described by
the spectral theorem for finite-dimensional self-adjoint operators (i.e. Her-
mitian matrices, when viewed in coordinates), which provides a sequence
λ1, . . . , λn ∈ R of eigenvalues and an orthonormal basis e1, . . . , en of eigen-
functions such that Lei = λiei for all i = 1, . . . , n. In particular, given any
function m : σ(L)→ C on the spectrum σ(L) := {λ1, . . . , λn} of L, one can
then define the linear operator m(L) : H → H by the formula

m(L)ei := m(λi)ei,

which then gives a functional calculus, in the sense that the map m 7→ m(L)
is a C∗-algebra isometric homomorphism from the algebra BC(σ(L)→ C) of
bounded continuous functions from σ(L) to C, to the algebra B(H → H) of
bounded linear operators on H; in other words, the map m 7→ m(L) is a ring
homomorphism such that m(L) = m(L)∗ and ‖m(L)‖op = supz∈σ(L) |m(z)|.
Thus, for instance, one can define heat operators e−tL for t > 0, Schrödinger
operators eitL for t ∈ R, resolvents 1

L−z for z 6∈ σ(L), and (if L is positive)

wave operators eit
√
L for t ∈ R. These will be bounded operators (and, in the

case of the Schrödinger and wave operators, unitary operators, and in the

205
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case of the heat operators with L positive, they will be contractions). Among
other things, this functional calculus can then be used to solve differential
equations such as the heat equation

(10.1) ut + Lu = 0; u(0) = f

the Schrödinger equation

(10.2) ut + iLu = 0; u(0) = f

the wave equation

(10.3) utt + Lu = 0; u(0) = f ; ut(0) = g

or the Helmholtz equation

(10.4) (L− z)u = f.

The functional calculus can also be associated to a spectral measure.
Indeed, for any vectors f, g ∈ H, there is a complex measure µf,g on σ(L)
with the property that

〈m(L)f, g〉H =

∫
σ(L)

m(x)dµf,g(x);

indeed, one can set µf,g to be the discrete measure on σ(L) defined by the
formula

µf,g(E) :=
∑
i:λi∈E

〈f, ei〉H〈ei, g〉H .

One can also view this complex measure as a coefficient

µf,g = 〈µf, g〉H
of a projection-valued measure µ on σ(L), defined by setting

µ(E)f :=
∑
i:λi∈E

〈f, ei〉Hei.

Finally, one can view L as unitarily equivalent to a multiplication operator
M : f 7→ gf on `2({1, . . . , n}), where g is the real-valued function g(i) := λi,
and the intertwining map U : `2({1, . . . , n})→ H is given by

U((ci)
n
i=1) :=

n∑
i=1

ciei,

so that L = UMU−1.

It is an important fact in analysis that many of these above assertions
extend to operators on an infinite-dimensional Hilbert space H, so long as
one one is careful about what “self-adjoint operator” means; these facts
are collectively referred to as the spectral theorem. For instance, it turns
out that most of the above claims have analogues for bounded self-adjoint
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operators L : H → H. However, in the theory of partial differential equa-
tions, one often needs to apply the spectral theorem to unbounded, densely
defined linear operators L : D → H, which (initially, at least), are only
defined on a dense subspace D of the Hilbert space H. A very typical sit-
uation arises when H = L2(Ω) is the square-integrable functions on some
domain or manifold Ω (which may have a boundary or be otherwise “incom-
plete”), and D = C∞c (Ω) are the smooth compactly supported functions on
Ω, and L is some linear differential operator. It is then of interest to obtain
the spectral theorem for such operators, so that one build operators such

as e−tL, eitL, 1
L−z , e

it
√
L or to solve equations such as (10.1), (10.2), (10.3),

(10.4).

In order to do this, some necessary conditions on the densely defined op-
erator L : D → H must be imposed. The most obvious is that of symmetry,
which asserts that

(10.5) 〈Lf, g〉H = 〈f, Lg〉H

for all f, g ∈ D. In some applications, one also wants to impose positive
definiteness, which asserts that

(10.6) 〈Lf, f〉H ≥ 0

for all f ∈ D. These hypotheses are sufficient in the case when L is bounded,
and in particular when H is finite dimensional. However, as it turns out,
for unbounded operators these conditions are not, by themselves, enough to
obtain a good spectral theory. For instance, one consequence of the spectral
theorem should be that the resolvents (L − z)−1 are well-defined for any
strictly complex z, which by duality implies that the image of L− z should
be dense in H. However, this can fail if one just assumes symmetry, or
symmetry and positive definiteness. A well-known example occurs when H
is the Hilbert space H := L2((0, 1)), D := C∞c ((0, 1)) is the space of test

functions, and L is the one-dimensional Laplacian L := − d2

dx2
. Then L is

symmetric and positive, but the operator L− k2 does not have dense image
for any complex k, since

〈(L− k2
)f, ekx〉H = 0

for all test functions f ∈ C∞c ((0, 1)), as can be seen from a routine integra-
tion by parts. As such, the resolvent map is not everywhere uniquely defined.
There is also a lack of uniqueness for the wave, heat, and Schrödinger equa-
tions for this operator (note that there are no spatial boundary conditions
specified in these equations).

Another example occurs when H := L2((0,+∞)), D := C∞c ((0,+∞)),
L is the momentum operator L := i ddx . Then the resolvent (L − z)−1 can
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be uniquely defined for z in the upper half-plane, but not in the lower half-
plane, due to the obstruction

〈(L− z)f, eiz̄x〉H = 0

for all test functions f (note that the function eiz̄x lies in L2((0,+∞)) when z
is in the lower half-plane). For related reasons, the translation operators eitL

have a problem with either uniqueness or existence (depending on whether
t is positive or negative), due to the unspecified boundary behaviour at the
origin.

The key property that lets one avoid this bad behaviour is that of essen-
tial self-adjointness. Once L is essentially self-adjoint, then spectral theorem
becomes applicable again, leading to all the expected behaviour (e.g. exis-
tence and uniqueness for the various PDE given above).

Unfortunately, the concept of essential self-adjointness is defined rather
abstractly, and is difficult to verify directly; unlike the symmetry condition
(10.5) or the positive definite condition (10.6), it is not a “local” condition
that can be easily verified just by testing L on various inputs, but is instead
a more “global” condition. In practice, to verify this property, one needs to
invoke one of a number of a partial converses to the spectral theorem, which
roughly speaking asserts that if at least one of the expected consequences
of the spectral theorem is true for some symmetric densely defined operator
L, then L is self-adjoint. Examples of “expected consequences” include:

(i) Existence of resolvents (L− z)−1 (or equivalently, dense image for
L− z);

(ii) Existence of a contractive heat propagator semigroup etL (in the
positive case);

(iii) Existence of a unitary Schrödinger propagator group eitL;

(iv) Existence of a unitary wave propagator group eit
√
L (in the positive

case);

(v) Existence of a “reasonable” functional calculus.

(vi) Unitary equivalence with a multiplication operator.

Thus, to actually verify essential self-adjointness of a differential opera-
tor, one typically has to first solve a PDE (such as the wave, Schrödinger,
heat, or Helmholtz equation) by some non-spectral method (e.g. by a con-
traction mapping argument, or a perturbation argument based on an oper-
ator already known to be essentially self-adjoint). Once one can solve one of
the PDEs, then one can apply one of the known converse spectral theorems
to obtain essential self-adjointness, and then by the forward spectral theo-
rem one can then solve all the other PDEs as well. But there is no getting
out of that first step, which requires some input (typically of an ODE, PDE,
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or geometric nature) that is external to what abstract spectral theory can
provide. For instance, if one wants to establish essential self-adjointness of
the Laplace-Beltrami operator L = −∆g on a smooth Riemannian manifold
(M, g) (using C∞c (M) as the domain space), it turns out (under reasonable
regularity hypotheses) that essential self-adjointness is equivalent to geodesic
completeness of the manifold, which is a global ODE condition rather than
a local one: one needs geodesics to continue indefinitely in order to be able
to (unitarily) solve PDEs such as the wave equation, which in turn leads to
essential self-adjointness. (Note that the domains (0, 1) and (0,+∞) in the
previous examples were not geodesically complete.) For this reason, essential
self-adjointness of a differential operator is sometimes referred to as quan-
tum completeness (with the completeness of the associated Hamilton-Jacobi
flow then being the analogous classical completeness).

In this chapter, I will record the forward and converse spectral theorems,
and to verify essential self-adjointness of the Laplace-Beltrami operator on
geodesically complete manifolds. This material is quite standard, and can
be found for instance in [ReSi1975].

10.1. Self-adjointness and resolvents

To begin, we study what we can abstractly say about a densely defined
symmetric linear operator L : D → H on a Hilbert space H. To avoid some
technical issues we shall assume that the Hilbert space is separable (i.e. it
has a countable dense subset), which is the case typically encountered in
applications (particularly in PDE). We will occasionally assume also that L
is positive, but will make this hypothesis explicit whenever we are doing so.

All convergence in Hilbert spaces will be in the strong (i.e. norm) topol-
ogy unless otherwise stated. Similarly, all inner products and norms will be
over H unless otherwise stated.

For technical reasons, it is convenient to reduce to the case when L is
closed, which means that the graph {(f, Lf) : f ∈ D} is a closed subspace of
H×H. Equivalently, L is closed if whenever fn ∈ D is a sequence converging
strongly to a limit f ∈ H, and Lfn converges to a limit g in H, then f ∈ D
and g = Lf . Note from the closed graph theorem that an everywhere-defined
linear operator is closed if and only if it is bounded.

Not every densely defined symmetric linear operator is closed (indeed,
one could take a closed operator and restrict the domain of definition to a
proper dense subspace). However, all such operators are closable, in that
they have a closure:

Lemma 10.1.1 (Closure). Let L : D → H be a densely defined symmetric
linear operator. Then there exists a unique extension L : D → H of L
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as a closed, densely defined symmetric linear operator, such that the graph
{(f, Lf) : f ∈ D} of L is the closure of the graph {(f, Lf) : f ∈ D} of L.

Proof. The key step is to show that the closure {(f, Lf) : f ∈ D} of the
graph of L remains a graph, i.e. it obeys the vertical line test. If this failed,
then by linearity one could find a sequence fn ∈ D converging to zero such
that Lfn converged to a non-zero limit g. Since D is dense, we can find
g′ ∈ D such that 〈g, g′〉 6= 0. But then by symmetry

〈fn, Lg′〉 = 〈Lfn, g′〉 = 〈gn, g′〉 → 〈g, g′〉 6= 0.

On the other hand, as fn → 0, 〈fn, Lg′〉 → 0. Thus {(f, Lf) : f ∈ D} is
the graph of some function L : D → H. It is easy to see that this is a
densely defined symmetric linear operator extending L, and is the unique
such operator. �

Exercise 10.1.1. Show that L is positive if and only if L is positive.

Remark 10.1.2. We caution that D is not the closure or completion of
D with respect to the usual norm f 7→ ‖f‖ on D. (Indeed, as D is a
dense subspace of H, that completion of D is simply H.) However, it is the
completion of D with respect to the modified norm f 7→ ‖f‖+ ‖Lf‖.

In PDE applications, the closure L tends to be defined on a Sobolev
space of functions that behave well at the boundary, and is given by a
distributional derivative. Here is a simple example of this:

Exercise 10.1.2. Let L be the Laplacian L = − d2

dx2
, defined on the dense

subspace D := C∞c ((0, 1)) of H := L2((0, 1)). Show that the closure L is
defined on the Sobolev space H2

0 ((0, 1)), defined as the closure of C∞c ((0, 1))
under the Sobolev norm

‖f‖H2
0 ((0,1)) := ‖f‖L2((0,1)) + ‖Lf‖L2((0,1)),

and that the action of L is given by the weak (distributional) derivative,

L = − d2

dx2
.

Next, we define the adjoint L∗ : D∗ → H of L : D → H, which informally
speaking is the maximally defined operator for which one has the relationship

(10.7) 〈Lf, g〉 = 〈f, L∗g〉

for f ∈ D and g ∈ D∗. More formally, define D∗ to be the set of all
vectors g ∈ H for which the map f 7→ 〈Lf, g〉 is a bounded linear functional
on D, which thus extends to the closure H of D. For such g ∈ H, we
may apply the Riesz representation theorem for Hilbert spaces and locate a
unique vector L∗g ∈ H for which (10.7) holds. This is easily seen to define
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a linear operator L∗ : D∗ → H. Furthermore, the claim that L is symmetric
can be reformulated as the claim that L∗ extends L.

If L is not symmetric, then L∗ does not extend L, and need not be
densely defined at all. However, it is still closed:

Exercise 10.1.3. Let L : D → H be a densely defined linear operator, and
let L∗ : D∗ → H be its adjoint. Show that {(−L∗g, g) : g ∈ D∗} is the
orthogonal complement in H × H of (the closure of) {(f, Lf) : f ∈ D}.
Conclude that L∗ is always closed.

If L is symmetric, show that L∗∗ = L and L∗ = (L)∗.

Exercise 10.1.4. Construct an example of a densely defined linear operator
L : D → H in a separable Hilbert space H for which L∗ is only defined at
{0}. (Hint: Build a dense linearly independent basis of H, let D be the
algebraic span of that basis, and design L so that the graph of L is dense in
H ×H.)

We caution that the adjoint L∗ : D∗ → H of a symmetric densely defined
operator L : D → H need not be itself symmetric, despite extending the
symmetric operator L:

Exercise 10.1.5. We continue Example 10.1.2. Show that for any complex
number k, the functions x 7→ ekx lie in D∗ with L∗ekx = −k2ekx. Deduce
that L∗ is not symmetric, and not positive.

Intuitively, the problem here is that the domain of L is too “small” (it
stays too far away from the boundary), which makes the domain of L∗ too
“large” (it contains too much stuff coming from the boundary), which ruins
the integration by parts argument that gives symmetry.

Now we can define (essential) self-adjointness.

Definition 10.1.3. Let L : D → H be a densely defined linear operator.

(i) L is self-adjoint if L = L∗. (Note that this implies in particular
that L is symmetric and closed.)

(ii) L is essentially self-adjoint if it is symmetric, and its closure L is
self-adjoint.

Note that this extends the usual definition of self-adjointness for bounded
operators. Conversely, from the closed graph theorem we also observe the
Hellinger-Toeplitz theorem: an operator that is self-adjoint and everywhere
defined, is necessarily bounded.

Exercise 10.1.6. Let L : D → H be a densely defined symmetric closed
linear operator. Show that L is self-adjoint if and only if L∗ is symmetric.
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It is not immediately obvious what advantage self-adjointness gives. To
see this, we consider the problem of inverting the operator L−z : D → H for
some complex number z, where L : D → H is densely defined, symmetric,
and closed. Observe that if f ∈ D, then 〈Lf, f〉 = 〈f, Lf〉 is necessarily real.
In particular,

Im〈(L− z)f, f〉 = − Im z‖f‖2

and hence by the Cauchy-Schwarz inequality

(10.8) ‖(L− z)f‖ ≥ | Im z|‖f‖.

In particular, if z is strictly complex (i.e. not real), then L− z is injective.
Furthermore, we see that if fn ∈ D is such that (L − z)fn is convergent,
then by (10.8) fn is convergent also, and hence Lfn is convergent. As L
was assumed to be closed, we conclude that fn converges to a limit f in D,
and (L − z)fn converges to (L − z)f . As a consequence, we see that the
space Image(L− z) := {(L− z)f : f ∈ D} is a closed subspace of H. From
(10.8) we then see that we can define an inverse R(z) : Image(L − z) → D
of L− z, which we call the resolvent of L with spectral parameter z; this is
a bounded linear operator with norm ‖R(z)‖op ≤ 1

| Im(z)| .

Exercise 10.1.7. If L is densely defined, symmetric, closed, and positive,
and z is a complex number with Re(z) < 0, show R(z) is well-defined on
Image(L− z) with ‖R(z)‖op ≤ 1

|Re(z)| .

Now we observe a connection between self-adjointness and the domain
of the resolvent. We first need some basic properties of the resolvent:

Exercise 10.1.8. Let L : D → H be densely defined, symmetric, and closed.

(i) (Resolvent identity) If z, w are distinct strictly complex numbers
with R(z), R(w) everywhere defined, show that (z−w)R(z)R(w) =
R(z)−R(w). (Hint: compute R(z)(H−w)R(w)−R(z)(H−z)R(w)
two different ways.)

(ii) If z is a strictly complex number with R(z) and R(z∗) everywhere
defined, show that R(z)∗ = R(z∗).

Proposition 10.1.4. Let L : D → H be densely defined, symmetric, and
closed, let L∗ : D∗ → H be the adjoint, and let z be strictly complex.

(i) (Surjectivity is dual to injectivity) R(z) is everywhere defined if and
only if the operator L∗ − z∗ : D∗ → H has trivial kernel.

(ii) (Self-adjointness implies surjectivity) If L is self-adjoint, then R(z)
is everywhere defined.

(iii) (Surjectivity implies self-adjointness) Conversely, if R(z) and R(z∗)
are both everywhere defined, then L is self-adjoint.
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In particular, we see that we have a criterion for self-adjointness: a
densely defined symmetric closed operator is self-adjoint if and only if R(i)
and R(−i) are both everywhere defined, or in other words if L+ i and L− i
are both surjective.

Proof. We first prove (i). If R(z) is not everywhere defined, then the closed
subspace Image(L − z) ⊂ H is not all of H. Thus there must be a non-
zero vector v ∈ H in the orthogonal complement of this subspace, thus
〈(L− z)f, g〉 = 0 for all f ∈ D. In particular,

|〈Lf, g〉| = |z||〈f, g〉| ≤ |z|‖f‖‖g‖
and hence, by definition of D∗, g lies in D∗. Now from (10.7) we have

〈f, (L∗ − z∗)g〉 = 〈(L− z)f, g〉 = 0

for all f ∈ D; since D is dense, we have (L∗ − z∗)g = 0 as required. The
converse implication follows by reversing these steps.

Now we prove (ii). Suppose that R(z) was not everywhere defined. By
(i) and self-adjointness, we conclude that (L − z∗)f = 0 for some non-zero
f ∈ D. But this contradicts (10.8).

Now we prove (iii). Let g ∈ D∗; our task is to show that g ∈ D. From
Exercise 10.1.8(ii) and (10.7) one has

〈f,R(z∗)(L∗ − z∗)g〉 = 〈R(z)f, (L∗ − z∗)g〉 = 〈(L− z)R(z)f, g〉 = 〈f, g〉
for all f ∈ H. We conclude that g = R(z∗)(L∗ − z∗)g. Since R(z∗) takes
values in D, the claim follows. �

Exercise 10.1.9. Let L : D → H be densely defined, symmetric, and closed,
and let z be strictly complex.

(i) If R(z) is everywhere defined, show that R(w) is everywhere defined
whenever |w − z| < Im(z). (Hint: use Neumann series.)

(ii) If R(z) is everywhere defined, show that R(w) is everywhere defined
whenever Im(w) has the same sign as Im(z).

(iii) If L is positive, and w is not a non-negative real, show that R(w)
is everywhere defined if and only if L is self-adjoint.

As a particular corollary of the above exercise, we see that a densely
defined, symmetric closed positive operator L is self-adjoint if and only if
R(−1) is everywhere defined, or in other words if 1 + L is surjective.

Exercise 10.1.10. Let (X,µ) be a measure space with a countably gener-
ated σ-algebra (so that L2(X,µ) is separable), let m : X → R be a mea-
surable function, and let D be the space of all f ∈ L2(X,µ) such that
mf ∈ L2(X,µ). Show that the multiplier operator L : D → L2(X,µ) de-
fined by Lf := mf is a densely defined self-adjoint operator.
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Exercise 10.1.11. Let H := L2((0,+∞)), D := C∞c ((0,+∞)), and L is
the momentum operator L := i ddx . Show that L is densely defined and
symmetric, and R(−i) is everywhere defined, but R(i) is only defined on the
orthogonal complement of e−x. (Here, we define the resolvent of a closable
operator to be the resolvent of its closure.) In particular, L is not self-
adjoint.

Exercise 10.1.12. Let L be densely defined and symmetric.

(i) Show that L is essentially self-adjoint if and only if Image(L + i)
and Image(L− i) are dense in H.

(ii) If L is positive, show that L is essentially self-adjoint if and only if
Image(1 + L) is dense in H.

Exercise 10.1.13. Let a1, a2, . . . and b1, b2, . . . be sequences of real numbers,
with the bn all non-zero. Define the Jacobi operator T : `2c(N)→ `2(N) from
the space `2c(N) of compactly supported sequences (xn)∞n=1 to the space
`2(N) of square-summable sequences (yn)∞n=1 by the formula

T (xn)∞n=1 = (bn−1xn−1 + anxn + bnxn+1)∞n=1

with the convention that bn−1xn−1 vanishes for n = 1.

(i) Show that T is densely defined and symmetric.

(ii) Show that T is essentially self-adjoint if and only if the (unique)
solution φn to the recurrence

bn−1φn−1 + (an − i)φn + bnφn+1 = 0

with φ1 = 1 (and the convention b0φ0 = 0), is not square-summable.

This exercise shows that the self-adjointness of an operator, even one as
explicit as a Jacobi operator, can depend in a rather subtle and “global”
fashion on the behaviour of the coefficients of that oeprator.

10.2. Self-adjointness and spectral measure

We have seen that self-adjoint operators have everywhere-defined resolvents
R(z) for all strictly complex z. Now we use this fact to build spectral
measures. We will need a useful tool from complex analysis, which places a
one-to-one correspondence between finite non-negative measures on R and
certain analytic functions on the upper half-plane:

Theorem 10.2.1 (Herglotz representation theorem). Let F : H→ H be an
analytic function from the upper half-plane H := {z ∈ C : Im(z) > 0} to the
closed upper half-plane H := {z ∈ C : Im(z) ≥ 0}, obeying a bound of the
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form |F (z)| ≤ C/ Im(z) for all z ∈ H and some C > 0. Then there exists a
finite non-negative Radon measure µ on R such that

(10.9) F (z) =

∫
R

1

x− z
dµ(x)

for all z ∈ H. Furthermore, one has yF (iy)→ µ(R) as y → +∞.

We set the proof of the above theorem as an exercise below. Note in
the converse direction that if µ is a finite non-negative Radon measure, then
the function F defined by (10.9) obeys all the hypotheses of the theorem.
The Herglotz representation theorem, like the more well known Riesz rep-
resentation theorem for measures, is a useful tool to construct non-negative
Radon measures; later on we will also use Bochner’s theorem for a similar
purpose.

Exercise 10.2.1. Let F be as in the hypothesis of the Herglotz repre-
sentation theorem. For each ε > 0, let Fε : R → H be the function
Fε(x) := F (x+ iε).

(i) Show that one has Fε+t = Fε ∗ Pt for all ε, t > 0, where Pt(x) :=
1
π

t
x2+t2

is the Poisson kernel and ∗ is the usual convolution oper-

ation. (Hint: apply Liouville’s theorem for harmonic functions to
the difference between Fε+t and Fε ∗ Pt.)

(ii) Show that the non-negative measures ImFε(x) dx have a finite mass
independent of ε, and converge in the vague topology as ε→ 0 to a
non-negative finite measure µ.

(iii) Prove the Herglotz representation theorem.

Now we return to spectral theory. Let L : D → H be a densely-defined
self-adjoint operator, and let f ∈ H. We consider the function

Ff,f (z) := 〈R(z)f, f〉

on the upper half-plane. We can use this function and the Herglotz repre-
sentation theorem to construct spectral measures µf,f :

Exercise 10.2.2. Let L, f , and Ff,f be as above.

(i) Show that Ff,f is analytic. (Hint: use Neumann series and Morera’s
theorem.)

(ii) Show that |Ff,f (z)| ≤ ‖f‖2/ Im(z) for all z in the upper half-plane.

(iii) Show that ImFf,f (z) ≥ 0 for all z in the upper half-plane. (Hint:
You will find Exercise 10.1.8 to be useful.)

(iv) Show that iyFf,f (iy) → ‖f‖2 for all f ∈ H. (Hint: first show this
for f ∈ D, writing f = R(i)g for some g ∈ H.)
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(v) Show that there is a non-negative Radon measure µf,f of total mass
‖f‖2 such that

〈R(z)f, f〉 =

∫
R

1

x− z
dµf,f (x)

for all z in either the upper or lower half-plane.

(vi) If L is positive, show that µf,f is supported in the right half-line
[0,+∞).

We can depolarise these measures by defining

µf,g :=
1

4
(µf+g,f+g − µf−g,f−g + iµf+ig,f+ig − iµf−ig,f−ig)

to obtain complex measures µf,g for any f, g ∈ H such that

〈R(z)f, g〉 =

∫
R

1

x− z
dµf,g(x)

for all z in either the upper or lower half-plane. From duality we see that
this uniquely defines µf,g. In particular, µf,g depends sesquilinearly on f, g,
and µg,f = µf,g. Also, since each µf,f has mass ‖f‖2, we see that the inner
product 〈f, g〉 can be recovered from the spectral measure µf,g:

(10.10) 〈f, g〉 =

∫
R
dµf,g(x).

Exercise 10.2.3. With the above notation and assumptions, establish the
bound ‖µf,g‖TV � ‖f‖‖g‖ for all f, g ∈ H. In particular, for any bounded
Borel-measurable function m : R→ C, there exists a unique bounded oper-
ator m(L) : H → H such that

(10.11) 〈m(L)f, g〉 =

∫
R
m(x) dµf,g(x).

Thus, for instance m(L) is the identity when m = 1, and m(L) = R(z)
when m(x) = 1

x−z .

We have just created a map m 7→ m(L) from the bounded Borel-
measurable functions B(R → C) on R, to the bounded operators B(H →
H) on H. Now we verify some basic properties of this map.

Exercise 10.2.4 (Bounded functional calculus). Let L : D → H be a self-
adjoint densely defined operator, and let m 7→ m(L) be as above.

(i) Show that the map m 7→ m(L) is *-algebra∗-linear. In particular,
if m is real-valued, then m(L) is self-adjoint.

(ii) For any f, g ∈ H and any strictly complex z, show that dµR(z)f,g(x) =
1

x−z dµf,g(x). (Hint: use the resolvent identity.)
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(iii) For any f, g ∈ H and any m ∈ B(R→ C), show that dµm(L)f,g =
m dµf,g.

(iv) Show that the map m 7→ m(L) is a ∗-homomorphism. In particular,
m(L) and m′(L) commute for all m,m′ ∈ B(R→ C).

(v) Show that ‖m(L)‖op � supx∈R |m(x)| for all m ∈ B(R → C).
Improve the � to ≤. (Hint: to get this improvement, use the

TT ∗ identity ‖T‖op = ‖TT ∗‖1/2op and the tensor power trick, see
[Ta2008, §1.9].)

(vi) For any Borel subset E of R, show that µ(E) := 1E(L) is an
orthogonal projection of H. Show that µ is a countably additive
projection-valued measure, thus

∑∞
n=1 µ(En) = µ(

⋃∞
n=1En) for any

sequence of disjoint Borel En, where the convergence is in the strong
operator topology.

(vii) For any bounded Borel set E, show that the image of µ(E) lies in
D.

(viii) Show that for any f ∈ D and g ∈ H, one has dµLf,g(x) = x dµf,g(x).

(ix) Let Dc be the union of the images of µ([−N,N ]) for N = 1, 2, . . ..
Show that Dc is a dense subspace of D (and hence of H), and that
L maps Dc to Dc.

(x) Show thatD is the space of all functions f ∈ H such that
∫
R |x|

2 dµf,f (x) <
∞. Conclude in particular that m(L) maps D to D for all m ∈
B(R→ C).

(xi) If m,m′ ∈ B(R → C) is such that m′(x) = xm(x) for all x ∈ R,
show that m(L) takes values in D, that m′(L)f = Lm(L)f for all
f ∈ H, and m′(L)f = m(L)Lf for all f ∈ D.

(xii) Let σ(L) be the space of all z such that L − z : D → H is not
invertible. Show that σ(L) is a closed set which is the union of the
supports of the µf,g as f, g range over H. In particular, σ(L) ⊂ R,
and σ(L) ⊂ [0,+∞) when L is positive. Show that µ(σ(L)) = µ(R)
is the identity map.

(xiii) Extend the bounded functional calculus from the bounded Borel
measurable functions B(R→ C) on R to the bounded measurable
functions B(σ(L) → C) on the spectrum σ(L) (i.e. show that the
previous statements (i)-(xi) continue to hold after R is replaced by
σ(L) throughout).

The above collection of facts (or various subcollections thereof) is often
referred to as the spectral theorem. It is stated for self-adjoint operators, but
one can of course generalise the spectral theorem to essentially self-adjoint
operators by applying the spectral theorem to the closure. (One has to
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replace the domain D of L by the domain D of the closure L, of course,
when doing so.)

Exercise 10.2.5 (Spectral measure and eigenfunctions). Let the notation
be as in the preceding exercise, and let λ ∈ R. Show that the space {f ∈
D : Lf = λf} is the range of the projection µ({λ}). In particular, L has an
eigenfunction at λ if and only if µ({λ}) is non-trivial.

We have seen how the existence of resolvents gives us a bounded func-
tional calculus (i.e. the conclusions in the above exercise). Conversely, if a
symmetric densely defined closed operator L has a bounded functional calcu-
lus, one can define the resolventsR(z) simply asmz(L), wheremz(x) := 1

x−z .
Thus we see that the existence of a bounded functional calculus is equivalent
to the existence of resolvents, which by the previous discussion is equivalent
to self-adjointness.

Using the bounded functional calculus, one can not only recover the
resolvents R(z), but can now also build Schrödinger propagators eitL, and
when L is positive definite one can also build heat operators etL for t > 0

and wave operators eit
√
L for t ∈ R (and also define resolvents R(−k2)

for negative choices −k2 of the spectral parameter). We will study these
operators more in the next section.

Exercise 10.2.6 (Locally bounded functional calculus). Let L : D → H be
a densely defined self-adjoint operator, and let Bloc(σ(L)→ C) be the space
of Borel-measurable functions from σ(L) to C which are bounded on every
bounded set.

(i) Show that for every m ∈ Bloc(σ(L) → C) there is a unique linear
operator m(L) : Dc → Dc such that

dµm(L)f,g(x) = m(x) dµf,g(x)

whenever f, g ∈ Dc.

(ii) Show that the map m 7→ m(L) is a ∗-homomorphism.

(iii) Show that when m is actually bounded (rather than merely lo-
cally bounded), then this definition of m(L) agrees with that in the
preceding exercise (after restricting from H to Dc).

(iv) Show that L = ι(L), where ι is the identity map ι(x) := x.

(v) State and prove a rigorous version of the formal assertion that

L =

∫
R
xdµ(x)

and more generally

m(L) =

∫
R
m(x)dµ(x).
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Now we use the spectral theorem to place self-adjoint operators in a
normal form. Let us say that two operators L : D → H and L′ : D′ → H ′

are unitarily equivalent if there is a unitary map U : H → H ′ with U(D) =
D′ and L′ = U−1LU . It is easy to see that all the constructions given
above (such as the bounded functional calculus) are preserved by unitary
equivalence.

If L : D → H is a densely defined self-adjoint operator, define an in-
variant subspace to be a subspace V of H such that m(L)V ⊂ V for all
m ∈ B(σ(L) → C). We say that a vector f ∈ H is a cyclic vector for H if
the set {m(L)f : m ∈ B(σ(L)→ C)} is dense in H.

Exercise 10.2.7.

(i) Show that if V is an invariant subspace of H, then so is V ⊥, and
furthermore the orthogonal projections to V and V ⊥ commute with
m(L) for every m ∈ B(σ(L)→ C).

(ii) Show that if V is a invariant subspace of H, then the restriction
L �V : D∩V → V of L to V is a densely defined self-adjoint operator
on V with σ(L �V ) ⊂ σ(L). Furthermore, one has m(L �V ) =
m(L) �V for all m ∈ B(σ(L)→ C).

(iii) Show that H decomposes as a direct sum
⊕

α∈AHα, where the
index set A is at most countable, and each Hα is a closed invari-
ant subspace of H (with the Hα mutually orthogonal), such that
each Hα has a cyclic vector fα. (Hint: use Zorn’s lemma and the
separability of H.)

(iv) If H has a cyclic vector f0, show that L is unitarily conjugate to
a multiplication operator f(x) 7→ xf(x) on L2(R, ν) for some non-
negative Radon measure ν, defined on the domain {f ∈ L2(R, ν) :
xf ∈ L2(R, ν)}.

(v) For generalH, show that L is unitarily conjugate to a multiplication
operator f(x) 7→ g(x)f(x) on L2(X, ν) for some measure space
(X, ν) with a countably generated σ-algebra and some measurable
g : X → R, defined on the domain {f ∈ L2(X, ν) : gf ∈ L2(X, ν)}.

The above exercise gives a satisfactory concrete description of a self-
adjoint operator (up to unitary equivalence) as a multiplication operator
on some measure space L2(X, ν), although we caution that this equivalence
is not canonical (there is some flexibility in the choice of the underlying
measure space (X, ν) and multiplier g, as well as the unitary conjugation
map).

Exercise 10.2.8. Let L : D → H be a self-adjoint densely defined operator.

(i) Show that L is positive if and only if σ(L) ⊂ [0,+∞).
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(ii) Show that L is bounded if and only if σ(L) is bounded. Further-
more, in this case we have ‖L‖op = supx∈σ(L) |x|.

(iii) Show that H is trivial if and only if σ(L) is empty.

10.3. Self-adjointness and flows

Now we relate self-adjointness to a variety of flows, beginning with the heat
flow.

Exercise 10.3.1. Let L : D → H be a self-adjoint positive densely defined
operator, and for each t ≥ 0, let S(t) : H → H be the heat operator S(t) :=
e−tL.

(i) Show that for each t ≥ 0, S(t) is a bounded self-adjoint operator of
norm at most 1, that the map t 7→ S(t) is continuous in the strong
operator topology, and such that S(0) = 1 and S(t)S(t′) = S(t+t′)
for all t, t′ ≥ 0. (The latter two properties are asserting that t 7→
S(t) is a one-parameter semigroup.)

(ii) Show that for any f ∈ D, S(t)f−f
t converges to −Lf as t→ 0+.

(iii) Conversely, if f ∈ H is not in D, show that S(t)f−f
t does not con-

verge as t→ 0+.

We remark that the above exercise can be viewed as a special case of
the Hille-Yoshida theorem.

We now establish a converse to the above statement:

Theorem 10.3.1. Let H be a separable Hilbert space, and suppose one has
a family t 7→ S(t) of bounded self-adjoint operators of norm at most 1 for
each t ≥ 0, which is continuous in the strong operator topology, and such
that S(0) = 1 and S(t)S(t′) = S(t + t′) for all t, t′ ≥ 0. Then there exists
a unique self-adjoint positive densely defined operator L : D → H such that
S(t) = e−tL for all t ≥ 0.

We leave the proof of this result to the exercise below. The basic idea
is to somehow use the identity

(x+ 1)−1 =

∫ ∞
0

e−txe−t dt

which suggests that

(L+ 1)−1 =

∫ ∞
0

S(t)e−t dt

which should allow one to recover L from the S(t).

Exercise 10.3.2. Let the notation be as in the above theorem.
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(i) Establish the uniqueness claim. (Hint: use Exercise 10.3.1.)

(ii) Let R be the operator

R :=

∫ ∞
0

S(t)e−t dt.

Show that R is well-defined, bounded, positive semidefinite, and
self-adjoint, with operator norm at most one, and that R commutes
with all the S(t).

(iii) Show that the spectrum of R lies in [0, 1], but that R has no eigen-
value at 0.

(iv) Show that there exists a densely defined self-adjoint operatorR−1 : D →
H such that RR−1 is the identity on D and R−1R is the identity
on H.

(v) Show that L := R−1− 1 is densely defined self-adjoint and positive
definite, and commutes with all the S(t).

(vi) Show that for all v ∈ H and t ≥ 0, one has d
dtS(t)Rf = −LS(t)Rf

and d
dte
−tLRf = −Le−tLRf , where the derivatives are in the clas-

sical limiting Newton quotient sense (in the strong topology of H).

(vii) Conclude the proof of Theorem 10.3.1. (Hint: show that d
dt‖S(t)Rf−

e−tLRf‖2 is non-positive.)

The above exercise gives an important way to establish essential self-
adjointness, namely by solving the heat equation (10.1):

Exercise 10.3.3. Let L : D → H be a densely defined symmetric positive
definite operator. Suppose that for every f ∈ D there exists a continuously
differentiable solution u : [0,+∞)→ D to (10.1). Show that L is essentially
self-adjoint. (Hint: by investigating d

dt‖u(t)‖2, establish the uniqueness of
solutions to the heat equation, which allows one to define linear contrac-
tions S(t). To establish self-adjointness of the S(t), take an inner product
of a solution to the heat equation against a time-reversed solution to the
heat equation, and differentiate that inner product in time. Now apply the
preceding exercises to obtain a self-adjoint extension L′ : D′ → H of L. To
show that L′ is the closure of L, it suffices to show that D is dense in D′ with
the inner product 〈f, g〉+ 〈L′f, g〉. But if D is not dense in D′, then it has a
non-trivial orthogonal complement; apply S(t) to this complement to show
that D also has a non-trivial orthogonal complement in H, a contradiction.)

Remark 10.3.2. When applying the above criterion for essential self-adjointness,
one usually cannot use the space C∞c of compactly supported smooth func-
tions as the dense subspace, because this space is usually not preserved by
the heat flow. However, in practice one can get around this by enlarging the
class, for instance to the class of Schwartz functions.
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Now we obtain analogous results for the Schrödinger propagators eitL.
We begin with the analogue of Exercise 10.3.1:

Exercise 10.3.4. Let L : D → H be a self-adjoint densely defined operator,
and for each t ∈ R, let U(t) : H → H be the Schrödinger operator S(t) :=
eitL.

(i) Show that for each t ∈ R, U(t) is a unitary operator, that the map
t 7→ U(t) is continuous in the strong operator topology, and such
that U(0) = 1 and U(t)U(t′) = U(t+ t′) for all t, t′ ≥ 0.

(ii) Show that for any f ∈ D, U(t)f−f
t converges to iLf as t→ 0.

(iii) Conversely, if f ∈ H is not in D, show that U(t)f−f
t does not

converge as t→ 0.

Now we can give the converse, known as Stone’s theorem on one-parameter
unitary groups:

Theorem 10.3.3 (Stone’s theorem). Let H be a separable Hilbert space,
and suppose one has a family t 7→ U(t) of unitary for each t ∈ R, which
is continuous in the strong operator topology, and such that U(0) = 1 and
U(t)U(t′) = U(t+t′) for all t, t′ ∈ R. Then there exists a unique self-adjoint
densely defined operator L : D → H such that U(t) = eitL for all t ∈ R.

We outline a proof of this theorem in an exercise below, based on using
the group U(t) to build spectral measure.

Exercise 10.3.5. Let the notation be as in the above theorem.

(i) Establish the uniqueness component of Stone’s theorem.

(ii) Show that for any f ∈ H, there is a non-negative Radon measure
µf,f of total mass ‖f‖2 such that

〈U(t)f, f〉 =

∫
R
eitx dµf,f (x)

for all t ∈ R. (Hint: use Bochner’s theorem, Proposition 2.3.5.)

(iii) Show that for any f, g ∈ H, there is a unique complex measure µf,g
such that

〈U(t)f, g〉 =

∫
R
eitx dµf,g(x)

for all t ∈ R. Show that µf,g is sesquilinear in f, g with µg,f = µf,g.

(iv) Show that for any m ∈ B(R → C), there is a unique bounded
operator m(L) : H → H such that

〈m(L)f, g〉 =

∫
R
m(x) dµf,g(x)

for all f, g ∈ H.
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(v) Show that dµm(L)f,g(x) = m(x) dµf,g(x) for all m ∈ B(R → C)
and f, g ∈ H.

(vi) Show that the map m 7→ m(L) is a *-homomorphism from B(R→
C) to B(H → H).

(vii) Show that there is a projection-valued measure µ with µ(R) = 1,
such that for every f, g, the complex measure µf,g := 〈µf, g〉 is such
that

〈U(t)f, g〉 =

∫
R
eitx dµf,g(x)

for all t ∈ R.

(viii) Show that there exists a self-adjoint densely defined operator L : D →
H whose spectral measure is µ.

(ix) Conclude the proof of Stone’s theorem.

Exercise 10.3.6. Let L : D → H be a densely defined symmetric operator.
Suppose that for every f ∈ D there exists a continuously differentiable
solution u : R→ D to (10.2). Show that L is essentially self-adjoint.

We can now see a clear link between essential self-adjointness and com-
pleteness, at least in the case of scalar first-order differential operators:

Exercise 10.3.7. Let M be a smooth manifold with a smooth measure µ,
and letX be a smooth vector field onM which is divergence-free with respect
to the measure µ. Suppose that the vector field X is complete in the sense
that for any x0 ∈M , there exists a global smooth solution x : R→M to the
ODE d

dtx(t) = X(x(t)) with initial data x(0) = x0. Show that the first-order

differential operator i∇X : Cc(M)→ L2(M) is essentially self-adjoint.

Extend the above result to non-divergence-free vector fields, after re-
placing ∇X with ∇X + 1

2 div(X).

Remark 10.3.4. The requirement of completeness is basically necessary;
one can still have essential self-adjointness if there are a measure zero set
of initial data x0 for which the trajectories of X are incomplete, but once
a positive measure set of trajectories become incomplete, the propagators
exp(t∇X) do not make sense globally, and so self-adjointness should fail.

Finally, we turn to the relationship between self-adjointness and the wave
equation, which is a more complicated variant of the relationship between
self-adjointness and the Schrödinger equation. More precisely, we will show
the following version of Exercise 10.3.6:

Theorem 10.3.5. Let L : D → H be a densely defined positive symmetric
operator. Suppose for every f, g ∈ D, there exists a twice continuously
differentiable (in D) solution u : R → D to (10.3). Then L is essentially
self-adjoint.
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(One could also obtain wave equation analogues of Exercise 10.3.4 or
Theorem 10.3.3, but these are somewhat messy to state, and we will not do
so here.)

We now prove this theorem. To simplify the exposition, we will assume
that L is strictly positive, in the sense that 〈Lf, f〉 > 0 for all non-zero
f ∈ D, and leave the general case as an exercise.

We introduce a new inner product 〈, 〉Ḣ1 on D by the formula

〈f, g〉Ḣ1 := 〈Lf, g〉.

By hypothesis, this is a Hermitian inner product on D. We then define an
inner product 〈, 〉E on D ×D by the formula

〈(u0, u1), (v0, v1)〉E := 〈u0, v0〉Ḣ1 + 〈u1, v1〉,

then this is a Hermitian inner product on D×D. We define the energy space
E be the completion of D × D with respect to this inner product; we can
factor this as E = Ḣ1 ×H, where Ḣ1 is the completion of D using the Ḣ1

inner product.

Suppose u : R → D is a twice continuously differentiable solution to
(10.3) for some f, g ∈ D. Then if we define the energy

E(t) :=
1

2
〈(u, ∂tu), (u, ∂tu)〉E ,

then one easily computes using (10.3) that ∂tE(t) = 0, and so

E(t) = E(0) =
1

2
〈(f, g), (f, g)〉E .

In particular, if f = g = 0, then u = 0, and so twice continuously differen-
tiable solutions to (10.3) are unique. This allows us to define wave operators
W (t) : D × D → D × D by defining W (t)(f, g) := (u(t), ∂tu(t)). This is
clearly linear, and from the energy identity we see that W is an isometry,
and thus extends to an isometry on the energy space E . From uniqueness
we also see that t 7→ W (t) is a one-parameter group, i.e. a homomorphism
that is continuous in the strong operator topology. In particular, the isome-
tries W (t) are invertible and are thus unitary. By Stone’s theorem, there

thus exists a densely defined self-adjoint operator A : D̃ → E on some dense
subspace D̃ of E such that W (t) = eitA for all t ∈ R.

If (f, g) ∈ D ×D, then from the twice differentiability of the solution u
to the wave equation, we see that

lim
t→0

W (t)(f, g)− (f, g)

t
= (g,−Lf).

From Exercise 10.2, we conclude that D ×D ⊂ D̃ and

(10.12) A(f, g) = (−ig, iLf)
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for all (f, g) ∈ D ×D.

Now we need to pass from the self-adjointness of A to the essential
self-adjointness of L. Suppose for contradiction that L was not essentially
self-adjoint. Then L + 1 does not have dense image, and so there exists a
non-zero h ∈ H such that

〈(L+ 1)f, h〉 = 0

for all f ∈ D.

It will be convenient to work with a “band-limited” portion of D×D, to
get around the problem that A and L can leave this domain. Let φ : R→ R
be a compactly supported even smooth function of total mass one. For any
R > 0, define the Littlewood-Paley projection

P≤R :=

∫
R
Rφ(Rt)W (t) dt =

∫
R
Rφ(Rt)eitA dt = φ̂(A/R),

where φ̂ is the Schwartz function φ̂(ξ) :=
∫
R φ(t)eitξ dt. Then (by strong

continuity of W (t)) these operators map D×D to D×D, commutes with the

entire functional calculus of A, and also maps E to D̃. Also, from functional
calculus one sees that

AP≤R = i

∫
R
R2φ′(Rt)W (t) dt

and in particular AP≤R maps D ×D to D ×D as well.

Let τ : E → E be the reflection operator τ(f, g) := (f,−g). From
time reversal of the wave equation, we have W (t)τ = τW (−t), and thus τ
commutes with P≤R. In particular, we can write

P≤R(f, g) = (P 0
≤Rf, P

1
≤Rg)

for some operators P 0
≤R : Ḣ1 → Ḣ1 and P 1

≤R : H → H. Since P≤R preserves

D ×D, the operators P 0
≤R, P

1
≤R preserve D.

For any (f, g) ∈ D ×D, we have

P≤RA(f, g) = AP≤R(f, g);

combining this with (10.12) we see that

P 0
≤Rg = P 1

≤Rg

and

P 1
≤RLf = LP 0

≤Rf

for all f, g ∈ D. Also, since AP≤R preserves D × D, we see that LP 0
≤R =

P 1
≤RL preserves D.
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We can then expand A2P≤R(f, g) as

AP≤RA(f, g) = AP≤R(−ig, iLf)

= A(−iP 1
≤Rg, iLP

0
≤Rf)

= (LP 0
≤Rf, LP

1
≤Rg)

and thus

(A2 + 1)P≤R(f, g) = ((L+ 1)P 0
≤Rf, (L+ 1)P 1

≤Rg).

In particular

〈(A2 + 1)P≤R(f, g), (0, h)〉E = 0

for all (f, g) ∈ D ×D. By duality (noting that (A2 + 1)P≤R is a bounded
real function of A) we conclude that

(A2 + 1)P≤R(0, h) = 0

But by sending R → ∞ and using the spectral theorem, this implies from
monotone convergence that the spectral measure µ(0,h),(0,h) is zero, and thus
(0, h) vanishes in E , a contradiction. This establishes the essential self-
adjointness of L.

Exercise 10.3.8. Establish Theorem 10.3.5 without the assumption that L
is strictly positive. (Hint: use the Cauchy-Schwarz inequality to show that
strict positivity is equivalent to the absence of eigenfunctions with eigenvalue
zero, and then quotient out such eigenfunctions.)

10.4. Essential self-adjointness of the Laplace-Beltrami
operator

We now discuss how one can use the above criteria to establish essential
self-adjointness of a Laplace-Beltrami operator −∆g on a smooth complete
Riemannian manifold (M, g), viewed as a densely defined symmetric positive
operator on the dense subspace C∞c (M) of L2(M). This result was first
established in [Ga1951], [Ro1960].

To do this, we have to solve a PDE - either the Helmholtz equation
(10.4) (for some z not on the positive real axis), the heat equation (10.1),
the Schrödinger equation (10.3.4), or the wave equation (10.3).

The Schrödinger formalism is quite suggestive. From a semiclassical per-
spective, the Schrödinger equation associated to the Laplace-Beltrami oper-
ator −∆g should be viewed as a quantum version of the classical flow asso-
ciated to the corresponding Hamiltonian gij(x)ξiξj , i.e. geodesic flow. From
Exercise 10.3.7 we know that the generator of Hamiltonian flows (normalised
by i) are essentially self-adjoint when they are complete (note from Liou-
ville’s theorem that such generators are automatically divergence-free with
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respect to Liouville measure), which suggests that the Schrödinger operator
−∆g should be also. Unfortunately, this is not a rigorous argument, and is
difficult to make it so due to the nature of the time-dependent Schrödinger
equation, which has infinite speed of propagation, and no dissipative proper-
ties. In practice, we therefore establish esssential self-adjointness by solving
one of the other equations.

To solve any of these equations, it is difficult to solve any of them by an
exact formula (unless the manifold M is extremely symmetric); but one can
proceed by solving them approximately, and using perturbation theory to
eliminate the error. This method works1 as long as the error created by the
approximate solution is both sufficiently small and sufficiently smooth that
perturbative techniques (such as Neumann series, or the inverse function
theorem) become applicable.

For instance, suppose one is trying to solve the Helmholtz equation

(−∆g + k2)u = f

for some large real k, and some f ∈ L2(M). For sake of concreteness let us
take M to be three-dimensional. If M was a Euclidean space R3, then we
have an explicit formula

u(x) =
1

4π

∫
R3

e−k|x−y|

|x− y|
f(y) dy

for the solution; note that the exponential decay of e−k|x−y| will keep u in
L2 as well. Inspired by this, we can try to solve the Helmholtz equation in
curved space by proposing as an approximate solution

u(x) =
1

4π

∫
M

e−kd(x,y)

d(x, y)
f(y) dg(y).

This is a little problematic because d(x, y) develops singularities after a cer-
tain point, but if one has a uniform lower bound on the injectivity radius
(here we are implicitly using the hypothesis of completeness), and also uni-
form bounds on the curvature and its derivatives, one can truncate this
approximate solution to the region where d(x, y) is small, and obtain an
approximate solution u whose error

e := (−∆g + k2)u− f
can be made to be smaller in L2 norm than that of f if the spectral parameter
k is chosen large enough; we omit the details. From this, we can then solve
the Helmholtz equation by Neumann series and thus establish essential self-
adjointness. A similar method also works (under the same hypotheses on

1This type of method, for instance, is used to deduce essential self-adjointness of various

perturbations −∆ + V of the Laplace-Beltrami operator from the essential self-adjointness of the
original operator −∆.
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M) to construct approximate heat kernels, giving another way to establish
essential self-adjointness of the Laplace-Beltrami operator.

What about when there is no uniform bound on the geometry? In that
case, it is best to work with the wave equation formalism, because the finite
speed of propagation property of that equation allows one to localise to
compact portions of the manifold for which uniform bounds on the geometry
are automatic. Indeed, to solve the wave equation in C∞c (M) for some
fixed period of time, one can use finite speed of propagation, combined
with completeness of the manifold, to work in a compact subset of this
manifold, which by suitable alteration of the metric beyond the support of
the solution, one can view as a subset of a compact complete manifold. On
such manifolds, we already know essential self-adjointness by the previous
arguments, so we may solve the wave equation in that setting (one can also
solve the wave equation using methods from microlocal analysis, if desired),
and then take repeated advantage of finite speed of propagation (which
can be proven rigorously by energy methods) to glue together these local
solutions to obtain a global solution; we omit the details.

In all these cases, a somewhat nontrivial application of PDE theory is
required. Unfortunately, this seems to be inevitable; at some point one must
somehow use the hypothesis of completeness of the underlying manifold, and
PDE methods are the only known way to connect that hypothesis to the
dynamics of the Laplace-Beltrami operator.



Chapter 11

Notes on Lie algebras

A abstract finite-dimensional complex Lie algebra, or Lie algebra for short, is
a finite-dimensional complex vector space g together with an anti-symmetric
bilinear form [, ] = [, ]g : g× g→ g that obeys the Jacobi identity

(11.1) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ g; by anti-symmetry one can also rewrite the Jacobi identity
as

(11.2) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

We will usually omit the subscript from the Lie bracket [, ]g when this will not
cause ambiguity. A homomorphism φ : g→ h between two Lie algebras g, h
is a linear map that respects the Lie bracket, thus φ([x, y]g) = [φ(x), φ(y)]h
for all x, y ∈ g. As with many other classes of mathematical objects, the class
of Lie algebras together with their homomorphisms then form a category.
One can of course also consider Lie algebras in infinite dimension or over
other fields, but we will restrict attention throughout these notes to the
finite-dimensional complex case. The trivial, zero-dimensional Lie algebra
is denoted 0; Lie algebras of positive dimension will be called non-trivial.

Lie algebras come up in many contexts in mathematics, in particular
arising as the tangent space of complex Lie groups. It is thus very profitable
to think of Lie algebras as being the infinitesimal component of a Lie group,
and in particular almost all of the notation and concepts that are applicable
to Lie groups (e.g. nilpotence, solvability, extensions, etc.) have infinitesimal
counterparts in the category of Lie algebras (often with exactly the same
terminology). See [Ta2013, §1.2] for more discussion about the connection
between Lie algebras and Lie groups (that article was focused over the reals
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instead of the complexes, but much of the discussion carries over to the
complex case).

A particular example of a Lie algebra is the general linear Lie algebra
gl(V ) of linear transformations x : V → V on a finite-dimensional complex
vector space (or vector space for short) V , with the commutator Lie bracket
[x, y] := xy−yx; one easily verifies that this is indeed an abstract Lie algebra.
We will define a concrete Lie algebra to be a Lie algebra that is a subalgebra
of gl(V ) for some vector space V , and similarly define a representation of a
Lie algebra g to be a homomorphism ρ : g → h into a concrete Lie algebra
h. It is a deep theorem of Ado (discussed in [Ta2013, §2.3]) that every
abstract Lie algebra is in fact isomorphic to a concrete one (or equivalently,
that every abstract Lie algebra has a faithful representation), but we will
not need or prove this fact here.

Even without Ado’s theorem, though, the structure of abstract Lie al-
gebras is very well understood. As with objects in many other algebraic
categories, a basic way to understand a Lie algebra g is to factor it into two
simpler algebras h, k via a short exact sequence

(11.3) 0→ h→ g→ k→ 0,

thus1 one has an injective homomorphism from h to g and a surjective ho-
momorphism from g to k such that the image of the former homomorphism
is the kernel of the latter. Given such a sequence, one can (non-uniquely)
identify g with the vector space h × k equipped with a Lie bracket of the
form

(11.4) [(t, x), (s, y)]g = ([t, s]h +A(t, y)−A(s, x) +B(x, y), [x, y]k)

for some bilinear maps A : h × k → h and B : k × k → h that obey some
Jacobi-type identities which we will not record here. Understanding ex-
actly what maps A,B are possible here (up to coordinate change) can be a
difficult task (and is one of the key objectives of Lie algebra cohomology),
but in principle at least, the problem of understanding g can be reduced
to that of understanding its factors k, h. To emphasise this, I will (perhaps
idiosyncratically) express the existence of a short exact sequence (11.3) by
the ATLAS-type notation [CoCuNoPaWi1985]

(11.5) g = h.k

although one should caution that for given h and k, there can be multiple
non-isomorphic g that can form a short exact sequence with h, k, so that
h.k is not a uniquely defined combination of h and k; one could emphasise
this by writing h.A,Bk instead of h.k, though we will not do so here. We will

1To be pedantic, a short exact sequence in a general category requires these homomorphisms

to be monomorphisms and epimorphisms respectively, but in the category of Lie algebras these

turn out to reduce to the more familiar concepts of injectivity and surjectivity respectively.
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refer to g as an extension of k by h, and read the notation (11.5) as “ g is
h-by-k”; confusingly, these two notations reverse the subject and object of
“by”, but unfortunately both notations are well entrenched in the literature.
We caution that the operation . is not commutative, and it is only partly
associative: every Lie algebra of the form k.(h.l) is also of the form (k.h).l, but
the converse is not true (see [Ta2013b, §2.4] for some related discussion).
As we are working in the infinitesimal world of Lie algebras (which have
an additive group operation) rather than Lie groups (in which the group
operation is usually written multiplicatively), it may help to think of h.k as
a (twisted) “sum” of h and k rather than a “product”; for instance, we have
g = 0.g and g = g.0, and also dim h.k = dim h + dim k.

Special examples of extensions h.k of k by h include the direct sum (or
direct product) h⊕ k (also denoted h× k), which is given by the construction
(11.4) with A and B both vanishing, and the split extension (or semidirect
product) h : k = h :ρ k (also denoted h n k = h nρ k), which is given by the
construction (11.4) with B vanishing and the bilinear map A : h × k → h
taking the form

A(t, x) = ρ(x)(t)

for some representation ρ : k → Der h of k in the concrete Lie algebra2 of
derivations Der h ⊂ gl(h) of h, that is to say the algebra of linear maps
D : h→ h that obey the Leibniz rule

D[s, t]h = [Ds, t]h + [s,Dt]h

for all s, t ∈ h.

There are two general ways to factor a Lie algebra g as an extension h.k
of a smaller Lie algebra k by another smaller Lie algebra h. One is to locate
a Lie algebra ideal (or ideal for short) h in g, thus [h, g] ⊂ h, where [h, g]
denotes the Lie algebra generated by {[x, y] : x ∈ h, y ∈ g}, and then take k
to be the quotient space g/h in the usual manner; one can check that h, k
are also Lie algebras and that we do indeed have a short exact sequence

g = h.(g/h).

Conversely, whenever one has a factorisation g = h.k, one can identify h with
an ideal in g, and k with the quotient of g by h.

The other general way to obtain such a factorisation is is to start with a
homomorphism ρ : g → m of g into another Lie algebra m, take k to be the

2The derivation algebra Der g of a Lie algebra g is analogous to the automorphism group

Aut(G) of a Lie group G, with the two concepts being intertwined by the tangent space functor
G 7→ g from Lie groups to Lie algebras (i.e. the derivation algebra is the infinitesimal version of

the automorphism group). Of course, this functor also intertwines the Lie algebra and Lie group
versions of most of the other concepts discussed here, such as extensions, semidirect products, etc.
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image ρ(g) of g, and h to be the kernel kerρ := {x ∈ g : ρ(x) = 0}. Again,
it is easy to see that this does indeed create a short exact sequence:

g = kerρ.ρ(g).

Conversely, whenever one has a factorisation g = h.k, one can identify k
with the image of g under some homomorphism, and h with the kernel of
that homomorphism. Note that if a representation ρ : g→ m is faithful (i.e.
injective), then the kernel is trivial and g is isomorphic to ρ(g).

Now we consider some examples of factoring some class of Lie algebras
into simpler Lie algebras. The easiest examples of Lie algebras to under-
stand are the abelian Lie algebras g, in which the Lie bracket identically
vanishes. Every one-dimensional Lie algebra is automatically abelian, and
thus isomorphic to the scalar algebra C. Conversely, by using an arbitrary
linear basis of g, we see that an abelian Lie algebra is isomorphic to the
direct sum of one-dimensional algebras. Thus, a Lie algebra is abelian if
and only if it is isomorphic to the direct sum of finitely many copies of C.

Now consider a Lie algebra g that is not necessarily abelian. We then
form the derived algebra [g, g]; this algebra is trivial if and only if g is
abelian. It is easy to see that [h, k] is an ideal whenever h, k are ideals, so in
particular the derived algebra [g, g] is an ideal and we thus have the short
exact sequence

g = [g, g].(g/[g, g]).

The algebra g/[g, g] is the maximal abelian quotient of g, and is known as the
abelianisation of g. If it is trivial, we call the Lie algebra perfect . If instead
it is non-trivial, then the derived algebra has strictly smaller dimension than
g. From this, it is natural to associate two series to any Lie algebra g, the
lower central series

g1 = g; g2 := [g, g1]; g3 := [g, g2]; . . .

and the derived series

g(1) := g; g(2) := [g(1), g(1)]; g(3) := [g(2), g(2)]; . . . .

By induction we see that these are both decreasing series of ideals of g,
with the derived series being slightly smaller (g(k) ⊆ gk for all k). We say
that a Lie algebra is nilpotent if its lower central series is eventually trivial,
and solvable if its derived series eventually becomes trivial. Thus, abelian
Lie algebras are nilpotent, and nilpotent Lie algebras are solvable, but the
converses are not necessarily true. For instance, in the general linear group
gln = gl(Cn), which can be identified with the Lie algebra of n×n complex
matrices, the subalgebra n of strictly upper triangular matrices is nilpotent
(but not abelian for n ≥ 3), while the subalgebra n of upper triangular
matrices is solvable (but not nilpotent for n ≥ 2). It is also clear that any
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subalgebra of a nilpotent algebra is nilpotent, and similarly for solvable or
abelian algebras.

From the above discussion we see that a Lie algebra is solvable if and
only if it can be represented by a tower of abelian extensions, thus

g = a1.(a2. . . . (ak−1.ak) . . .)

for some abelian a1, . . . , ak. Similarly, a Lie algebra g is nilpotent if it is
expressible as a tower of central extensions (so that in all the extensions h.k
in the above factorisation, h is central in h.k, where we say that h is central
in g if [h, g] = 0). We also see that an extension h.k is solvable if and only
of both factors h, k are solvable. Splitting abelian algebras into cyclic (i.e.
one-dimensional) ones, we thus see that a finite-dimensional Lie algebra is
solvable if and only if it is polycylic, i.e. it can be represented by a tower of
cyclic extensions.

For our next fundamental example of using short exact sequences to split
a general Lie algebra into simpler objects, we observe that every abstract
Lie algebra g has an adjoint representation ad: g → ad g ⊂ gl(g), where
for each x ∈ g, adx ∈ gl(g) is the linear map (adx)(y) := [x, y]; one easily
verifies that this is indeed a representation (indeed, (11.2) is equivalent to
the assertion that ad[x, y] = [adx, ad y] for all x, y ∈ g). The kernel of this
representation is the centre Z(g) := {x ∈ g : [x, g] = 0}, which the maximal
central subalgebra of g. We thus have the short exact sequence

(11.6) g = Z(g). ad g

which, among other things, shows that every abstract Lie algebra is a central
extension of a concrete Lie algebra (which can serve as a cheap substitute
for Ado’s theorem mentioned earlier).

For our next fundamental decomposition of Lie algebras, we need some
more definitions. A Lie algebra g is simple if it is non-abelian and has
no ideals other than 0 and g; thus simple Lie algebras cannot be factored
g = h.k into strictly smaller algebras h, k. In particular, simple Lie algebras
are automatically perfect and centreless. We have the following fundamental
theorem:

Theorem 11.0.1 (Equivalent definitions of semisimplicity). Let g be a Lie
algebra. Then the following are equivalent:

(i) g does not contain any non-trivial solvable ideal.

(ii) g does not contain any non-trivial abelian ideal.

(iii) The Killing form K : g × g → C, defined as the bilinear form
K(x, y) := trg((adx)(ad y)), is non-degenerate on g.

(iv) g is isomorphic to the direct sum of finitely many non-abelian sim-
ple Lie algebras.



234 11. Notes on Lie algebras

We review the proof of this theorem later in this chapter. A Lie al-
gebra obeying any (and hence all) of the properties (i)-(iv) is known as a
semisimple Lie algebra. The statement (iv) is usually taken as the defini-
tion of semisimplicity; the equivalence of (iv) and (i) is a special case of
Weyl’s complete reducibility theorem (see Theorem 11.9.1), and the equiva-
lence of (iv) and (iii) is known as the Cartan semisimplicity criterion. (The
equivalence of (i) and (ii) is easy.)

If h and k are solvable ideals of a Lie algebra g, then it is not difficult to
see that the vector sum h+ k is also a solvable ideal (because on quotienting
by h we see that the derived series of h+ k must eventually fall inside h, and
thence must eventually become trivial by the solvability of h). As our Lie
algebras are finite dimensional, we conclude that g has a unique maximal
solvable ideal, known as the radical rad g of g. The quotient g/ rad g is
then a Lie algebra with trivial radical, and is thus semisimple by the above
theorem, giving the Levi decomposition

g = rad g.(g/ rad g)

expressing an arbitrary Lie algebra as an extension of a semisimple Lie
algebra g/ rad g by a solvable algebra rad g (and it is not hard to see that
this is the only possible such extension up to isomorphism). Indeed, a deep
theorem of Levi allows one to upgrade this decomposition to a split extension

g = rad g : (g/ rad g)

although we will not need or prove this result here.

In view of the above decompositions, we see that we can factor any
Lie algebra (using a suitable combination of direct sums and extensions)
into a finite number of simple Lie algebras and the scalar algebra C. In
principle, this means that one can understand an arbitrary Lie algebra once
one understands all the simple Lie algebras (which, being defined over C,
are somewhat confusingly referred to as simple complex Lie algebras in the
literature). Amazingly, this latter class of algebras are completely classified:

Theorem 11.0.2 (Classification of simple Lie algebras). Up to isomor-
phism, every simple Lie algebra is of one of the following forms:

(i) An = sln+1 for some n ≥ 1.

(ii) Bn = so2n+1 for some n ≥ 2.

(iii) Cn = sp2n for some n ≥ 3.

(iv) Dn = so2n for some n ≥ 4.

(v) E6, E7, or E8.

(vi) F4.

(vii) G2.
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(The precise definition of the classical Lie algebras An, Bn, Cn, Dn and the
exceptional Lie algebras E6, E7, E8, F4, G2 will be recalled later.)

One can extend the families An, Bn, Cn, Dn of classical Lie algebras a
little bit to smaller values of n, but the resulting algebras are either isomor-
phic to other algebras on this list, or cease to be simple; see [Ta2013c, §2.1]
for further discussion.)

This classification is a basic starting point for the classification of many
other related objects, including Lie algebras and Lie groups over more gen-
eral fields (e.g. the reals R), as well as finite simple groups. Being so fun-
damental to the subject, this classification is covered in almost every basic
textbook in Lie algebras; I will review it in this chapter. The material here
is all drawn from standard reference texts (I relied particularly on [FuHa]).
In fact it seems remarkably hard to deviate from the standard routes given
in the literature to the classification.

11.1. Abelian representations

One of the key strategies in the classification of a Lie algebra g is to work with
representations of g, particularly the adjoint representation ad: g → ad g,
and then restrict such representations to various simpler subalgebras h of
g, for which the representation theory is well understood. In particular,
one aims to exploit the representation theory of abelian algebras (and to a
lesser extent, nilpotent and solvable algebras), as well as the fundamental
example of the two-dimensional special linear Lie algebra sl2, which is the
smallest and easiest to understand of the simple Lie algebras, and plays an
absolutely crucial role in exploring and then classifying all the other simple
Lie algebras.

We begin this program by recording the representation theory of abelian
Lie algebras. We begin with representations ρ : C → gl(V ) of the one-
dimensional algebra C. Setting x := ρ(1), this is essentially the representa-
tion theory of a single linear transformation x : V → V . Here, the theory is
given by the Jordan decomposition. Firstly, for each complex number λ ∈ C,
we can define the generalised eigenspace

V x
λ := {v ∈ V : (x− λ)nv = 0 for some n}.

One easily verifies that the V x
λ are all linearly independent x-invariant sub-

spaces of V , and in particular that there are only finitely many λ (the
spectrum σ(x) of x) for which V x

λ is non-trivial. If one quotients out all the
generalised eigenspaces, one can check that the quotiented transformation
x no longer has any spectrum, which contradicts the fundamental theorem
of algebra applied to the characteristic polynomial of this quotiented trans-
formation (or, if is more analytically inclined, one could apply Liouville’s
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theorem to the resolvent operators to obtain the required contradiction).
Thus the generalised eigenspaces span V :

V =
⊕
λ∈σ(x)

V x
λ .

On each space V x
λ , the operator x− λ only has spectrum at zero, and thus

(again from the fundamental theorem of algebra) has non-trivial kernel;
similarly for any x-invariant subspace of V x

λ , such as the range (x − λ)V x
λ

of x − λ. Iterating this observation we conclude that x − λ is a nilpotent
operator on V x

λ , thus (x − λ)n = 0 for some n. If we then write xss to be
the direct sum of the scalar multiplication operators λ on each generalised
eigenspace V x

λ , and xn to be the direct sum of the operators x− λ on these
spaces, we have obtained the Jordan decomposition (or Jordan-Chevalley
decomposition)

x = xss + xn

where the operator xss : V → V is semisimple in the sense that it is a
diagonalisable linear transformation on V (or equivalently, all generalised
eigenspaces are actually eigenspaces), and xn is nilpotent. Furthermore, as
we may use polynomial interpolation to find a polynomial P : C → C such
that P (z)− λ vanishes to arbitrarily high order at z = λ for each λ ∈ σ(V )
(and also P (0) = 0), we see that xss (and hence xn) can be expressed as
polynomials in x with zero constant coefficient; this fact will be important
later. In particular, xss and xn commute.

Conversely, given an arbitrary linear transformation x : V → V , the
Jordan-Chevalley decomposition is the unique decomposition into commut-
ing semisimple and nilpotent elements. Indeed, if we have an alternate
decomposition x = x′ss + x′n into a semisimple element x′ss commuting with
a nilpotent element x′n, then the generalised eigenspaces of x must be pre-
served by both x′ss and x′n, and so without loss of generality we may assume
that there is just a single generalised eigenspace V = V x

λ ; subtracting λ we
may then assume that λ = 0, but then x is nilpotent, and so x′ss = x − x′n
is also nilpotent; but the only transformation which is both semisimple and
nilpotent is the zero transformation, and the claim follows.

From the Jordan-Chevalley decomposition it is not difficult to then
place x in Jordan normal form by selecting a suitable basis for V ; see e.g.
[Ta2008, §1.13]. But in contrast to the Jordan-Chevalley decomposition,
the basis is not unique in general, and we will not explicitly use the Jordan
normal form in the rest of this chapter.

Given an abstract complex vector space V , there is in general no canoni-
cal notion of complex conjugation on V , or of linear transformations x : V →
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V . However, we can define the conjugate x of any semisimple transforma-
tion x : V → V , defined as the direct sum of λ on each eigenspace V x

λ of x.
In particular, we can define the conjugate xss : V → V of the semisimple
component xss of an arbitrary linear transformation xss, which will be the
direct sum of λ on each generalised eigenspace V x

λ of x. The significance of
this transformation lies in the observation that the product xssx has trace
|λ|2 dimV x

λ on each generalised eigenspace (since nilpotent operators have
zero trace), and in particular we see that

(11.7) tr(xssx) = 0

if and only if the spectrum consists only of zero, or equivalently that x is
nilpotent. Thus (11.7) provides a test for nilpotency, which will be turn out
to be quite useful later in this chapter. (Note that this trick relies very much
on the special structure of C, in particular the fact that it has characteristic
zero.)

In the above arguments we have used the basic fact that if two operators
x : V → V and y : V → V commute, then the generalised eigenspaces of
one operator are preserved by the other. Iterating this fact, we can now
start understanding the representations ρ : h → gl(V ) of an abelian Lie
algebra. Namely, there is a finite set σ(ρ) ⊂ h∗ of linear functionals (or
homomorphisms) λ : h → C on h (i.e. elements of the dual space h∗) for
which the generalised eigenspaces

V h
λ := {v ∈ V : (ρ(h)− λ)nv = 0 for some n}

are non-trivial and h-invariant, and we have the decomposition

V =
⊕
λ∈σ(x)

V h
λ .

Here we use (ρ(h)−λ)nv = 0 as short-hand for writing (x1−λ(x1)) . . . (ρ(xn)−
λ(xn))v = 0 for all x1, . . . , xn ∈ h. An important special case arises when
the action of h is semisimple in the sense that ρ(x) is semisimple for all
x ∈ h. Then all the generalised eigenspaces are just eigenspaces (or weight
spaces), thus

ρ(x)v = λ(x)v

for all v ∈ V h
λ and x ∈ h. When this occurs we call v a weight vector with

weight λ.

11.2. Engel’s theorem and Lie’s theorem

In the introduction we gave the two basic examples of nilpotent and solvable
Lie algebras, namely the strictly upper triangular and upper triangular ma-
trices. The theorems of Engel and Lie assert, roughly speaking, that these
examples (and subalgebras thereof) are essentially the only type of solvable
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and nilpotent Lie algebras that can exist, at least in the concrete setting of
subalgebras of gl(V ). Among other things, these theorems greatly clarify
the representation theory of nilpotent and solvable Lie algebras.

We begin with Engel’s theorem.

Theorem 11.2.1 (Engel’s theorem). Let g ⊂ gl(V ) be a concrete Lie algebra
such that every element x of g is nilpotent as a linear transformation on V .

(i) If V is non-trivial, then there is a non-zero element v of V which
is annihilated by every element of g.

(ii) There is a basis of V for which all elements of g are strictly upper
triangular. In particular, g is nilpotent.

Proof. We begin with (i). We induct on the dimension of g. The claim is
trivial for dimensions 0 and 1, so suppose that g has dimension greater than
1, and that the claim is already proven for smaller dimensions.

Let h be a maximal proper subalgebra of g, then h has dimension strictly
between zero and dim g (since all one-dimensional subspaces are proper sub-
algebras). Observe that for every x ∈ h, adx acts on both the vector spaces
g and h and thus also on the quotient space g/h. As x is nilpotent, all
of these actions are nilpotent also. In particular, by induction hypothesis,
there is v ∈ g/h which is annihilated by adx for all x ∈ h. Let w be a
representative of v in g, then [w, h] ⊂ h, and so span(w, h) is a subalgebra
and is thus all of g.

By induction hypothesis again, the space W of vectors in V annihilated
by h is non-trivial; as [w, h] ⊂ h, it is preserved by w. As w is nilpotent,
there is a non-trivial element of W annihilated by w and hence by g, as
required.

Now we prove (ii). We induct on the dimension of V . The case of
dimension zero is trivial, so suppose V has dimension at least one, and the
claim has already been proven for dimension dim(V ) − 1. By (i), we may
find a non-trivial vector v annihilated by g, and so we may project g down to
gl(V/ span(v)). By the induction hypothesis, there is a basis for V/ span(v)
on which the projection of any element of g is strictly upper-triangular;
pulling this basis back to V and adjoining v, we obtain the claim. �

As a corollary of this theorem and the short exact sequence (11.6) we
see that an abstract Lie algebra g is nilpotent iff ad g is nilpotent iff adx is
nilpotent in g for every x ∈ g (i.e. every element of g is ad-nilpotent).

Engel’s theorem is in fact valid over every field. The analogous theo-
rem of Lie for solvable algebras, however, relies much more strongly on the
specific properties of the complex field C.
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Theorem 11.2.2 (Lie’s theorem). Let g ⊂ gl(V ) be a solvable concrete Lie
algebra.

(i) If V is non-trivial, there exists a non-zero element v of V which is
an eigenvector for every element of g.

(ii) There is a basis for V such that every element of g is upper trian-
gular.

Note that if one specialises Lie’s theorem to abelian g then one essentially
recovers the abelian theory of the previous section.

Proof. We prove (i). As before we induct on the dimension of g. The
dimension zero case is trivial, so suppose that g has dimension at least one
and that the claim has been proven for smaller dimensions.

Let h be a codimension one subalgebra of g; such an algebra can be
formed by taking a codimension one subspace of the abelianisation g/[g, g]
(which has dimension at least one, else g will not be solvable) and then
pulling back to g. Note that h is automatically an ideal.

By induction, there is a non-zero element v of V such that every element
of h has v as an eigenvector, thus we have

xv = λ(x)v

for all x ∈ h and some linear functional λ : h → C. If we then set W = V h
λ

to be the simultaneous eigenspace

W := {w ∈ V : xv = λ(x)v for all x ∈ h}

then W is a non-trivial subspace of V .

Let y be an element of g that is not in h, and let w ∈ W . Consider
the space spanned by the orbit w, yw, y2w, . . .. By finite dimensionality,
this space has a basis w, yw, y2w, . . . , yn−1w for some n. By induction and
definition of W , we see that every x ∈ h acts on this space by an upper-
triangular matrix with diagonal entries λ(x) in this basis. Of course, y
acts on this space as well, and so [x, y] has trace zero on this space, thus
nλ([x, y]) = 0 and so λ([x, y]) = 0 (here we use the characteristic zero nature
of C). From this we see that y fixes W . If we let v′ be an eigenvector of y
on W (which exists from the Jordan decomposition of y), we conclude that
v′ is a simultaneous eigenvector of g as required.

The claim (ii) follows from (i) much as in Engel’s theorem. �

11.3. Characterising semisimplicity

The objective of this section will be to prove Theorem 11.0.1.
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Let g ⊂ gl(V ) be an concrete Lie algebra, and x be an element of g.
Then the components xss, xn : V → V of x need not lie in g. However they
behave “as if” they lie in g for the purposes of taking Lie brackets, in the
following sense:

Lemma 11.3.1. Let g ⊂ gl(V ) and let x ∈ g have Jordan decomposition
x = xss + xn. Then [xss, g] ⊂ [g, g], [xss, g] ⊂ [g, g] and [xn, g] ⊂ [g, g].

Proof. As xss and xn are semisimple and nilpotent on V and commute
with each other, adxss and adxn are semisimple and nilpotent on gl(V )
and also commute with each other (this can for instance by using Lie’s
theorem (or the Jordan normal form) to place x in upper triangular form
and computing everything explicitly). Thus adx = adxss + adxn is the
Jordan-Chevalley decomposition of adx, and in particular adxss = Q(adx)
for some polynomial Q with zero constant coefficient. Since adx maps g
to the subalgebra [g, g], we conclude that adxss = Q(adx) does also, thus
[xss, g] ⊂ [g, g] as required. Similarly for xss and xn (note that adxss =
adxss). �

We can now use this (together with Engel’s theorem and the test (11.7)
for nilpotency) to obtain a part of Theorem 11.0.1:

Proposition 11.3.2. Let g be a simple Lie algebra. Then the Killing form
K is non-degenerate.

Proof. As g is simple, its centre Z(g) is trivial, so by (11.6) g is isomorphic
to ad g. In particular we may assume that g is a concrete Lie algebra, thus
g ⊂ gl(V ) for some vector space V .

Suppose for contradiction thatK is degenerate. Using the skew-adjointness
identity

K([z, x], y) = −K(x, [z, y])

for all x, y, z ∈ g (which comes from the cyclic properties of trace), we see
that the kernel {x ∈ g : K(x, y) = 0 for all y ∈ g} is a non-trivial ideal of g,
and is thus all of g as g is simple. Thus K(x, y) = 0 for all x, y ∈ g.

Now let x, y, z ∈ g. By Lemma 11.3.1, xss acts by Lie bracket on g and
so one can define adxss ∈ gl(g). We now consider the quantity

trg(adxss)(ad[y, z]).

We can rearrange this as

trg(ad[y, xss])(ad z).

By Lemma 11.3.1, [y, xss] ∈ g, so this is equal to

K([y, xss], z) = 0,
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and so

trg(adxss)(adw) = 0

for all w ∈ [g, g]. On the other hand, [g, g] is an ideal of g; as g is simple, we
must thus have g = [g, g] (i.e. g is perfect). As x ∈ g, we conclude that

trg(adxss)(adx) = 0.

From (11.7) we conclude that adx is nilpotent for every x. By Engel’s
theorem, this implies that ad g, and hence g, is nilpotent; but g is simple,
giving the desired contradiction. �

Corollary 11.3.3. Let h be a simple ideal of a Lie algebra g. Then h is
complemented by another ideal k of g (thus h∩ k = {0} and h + k = g), with
g isomorphic to the direct sum h⊕ k.

Proof. The adjoint action of g restricts to the ideal h and gives a restricted
Killing form

Kh(x, y) := trh((adx)(ad y)).

By Proposition 11.3.2, this bilinear form is non-degenerate on h, so the
orthogonal complement

k := h⊥ = {x ∈ g : Kh(x, y) = 0 for all y ∈ h}

is a complementary subspace to h. It can be verified to also be an ideal.
Since [h, k] lies in both h and k, we see that [h, k] = 0, and so g is isomorphic
to h⊕ k as claimed. �

Now we can prove Theorem 11.0.1. We first observe that (i) trivially
implies (ii); conversely, if g has a non-trivial solvable ideal h, then every
element of the derived series of h is also an ideal of g, and in particular g
will have a non-trivial abelian ideal. Thus (i) and (ii) are equivalent.

Now we show that (i) implies (iv), which we do by induction on the
dimension of g. Of course we may assume g is non-trivial. Let h be a non-
trivial ideal of g of minimal dimension. If h = g then g is simple (note that
it cannot be abelian as g is non-trivial and semisimple) and we are done.
If h is strictly smaller than g, then it also has no non-trivial solvable ideals
(because the radical of h is a characteristic subalgebra of h (that is, it is
invariant with respect to automorphisms of h) and is thus an ideal in g) and
so by induction is isomorphic to the direct sum of simple Lie algebras; as
h was minimal, we conclude that h is itself simple. By Corollary 11.3.3, g
then splits as the direct sum of h and a semisimple Lie algebra of strictly
smaller dimension, and the claim follows from the induction hypothesis.

From Proposition 11.3.2 we see that (iv) implies (iii), so to finish the
proof of Theorem 11.0.1 it suffices to show that (iii) implies (ii). Indeed, if
g has a non-trivial abelian ideal h, then for any x ∈ g and y ∈ h, adx ad y
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annihilates h and also has range in h, hence has trace zero, so h is K-
orthogonal to g, giving the degeneracy of the Killing form.

Remark 11.3.4. Similar methods also give the Cartan solvability criterion:
a Lie algebra g is solvable if and only if g is orthogonal to [g, g] with respect
to the Killing form. Indeed, the “only if” part follows easily from Lie’s
theorem, while for the “if” part one can adapt the proof of Proposition
11.3.2 to show that if g is orthogonal to [g, g], then every element of ad[g, g]
is nilpotent, hence by Engel’s theorem ad[g, g] is nilpotent, and so from the
short exact sequence (11.6) we see that [g, g] is nilpotent, and hence g is
solvable.

Remark 11.3.5. The decomposition of a semisimple Lie algebra as the
direct sum of simple Lie algebras is unique up to isomorphism and permuta-

tion. Indeed, suppose that
⊕n

i=1 gi is isomorphic to
⊕n′

j=1 g
′
j for some simple

gi, g
′
j . We project each g′j to gi and observe from simplicity that these pro-

jections must either be zero or isomorphisms (cf. Schur’s lemma). For fixed
i, there must be at least one j for which the projection is an isomorphism

(otherwise
⊕n′

j=1 g
′
j could not generate all of

⊕n
i=1 gi); on the other hand,

as any two g′j commute with each other in the direct sum, and gi is non-
abelian, there is at most one j for which the projection is an isomorphism.
This gives the required identification of the gi and g′j up to isomorphism
and permutation.

Remark 11.3.6. One can also establish complete reducibility by using the
Weyl unitary trick, in which one first creates a real compact Lie group whose
Lie algebra is a real form of the complex Lie algebra being studied, and then
uses the complete reducibility of actions of compact groups. This also gives
an alternate way to establish Theorem 11.9.1 in Section 11.9.

Semisimple Lie algebras have a number of important non-degeneracy
properties. For instance, they have no non-trivial outer automorphisms (at
the infinitesimal level, at least):

Lemma 11.3.7 (Semisimple derivations are inner). Let g be a semisimple
Lie algebra. Then every derivation D ∈ Der g on g is inner, thus D = adx
for some x ∈ g.

Proof. From the identity [D, adx] = adDx we see that ad g is an ideal in
Der g. The trace form (D1, D2) 7→ tr(D1D2) on Der g restricts to the Killing
form on ad(g), which is non-degenerate.

Suppose for contradiction that ad(g) is not all of Der(g), then there is
a non-trivial derivation D which is trace-form orthogonal to ad(g), thus D
is trace-orthogonal to [adx, ad y] for all x, y ∈ g, so that [D, adx] = adDx
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is trace-orthogonal to ad y for all x, y ∈ g. As K is non-degenerate, we
conclude that Dx = 0 for all x, and so D is trivial, a contradiction. �

This fact, combined with the complete reducibility of g-modules (a fact
which we will prove in an appendix) implies that the Jordan decomposition
preserves concrete semisimple Lie algebras:

Corollary 11.3.8. Let g ⊂ gl(V ) be a concrete semisimple Lie algebra, and
let x ∈ g. Then xss, xn, xss also lie in g.

Proof. By Theorem 11.0.1, g is the direct sum of commuting simple alge-
bras. It is easy to see that if x, y commute then the Jordan decomposition of
x+y arises from the sum of the Jordan decompositions of x and y separately,
so we may assume without loss of generality that g is simple.

Observe that if V splits as the direct sum V = V1⊕V2 of two g-invariant
subspaces (so that g can be viewed as a subalgebra of gl(V1) ⊕ gl(V2), and
the elements of x can be viewed as being block-diagonal in a suitable basis
of V1, V2), then the claim for V follows from that of V1 and V2. So by an in-
duction on dimension, it suffices to establish the claim under the hypothesis
that V is indecomposable, in that it cannot be expressed as the direct sum
of two non-trivial invariant subspaces.

In Section 11.9 we will show that every invariant subspace W of V is
complemented in that one can write V = W⊕W ′ for some invariant subspace
W ′. Assuming this fact, it suffices to establish the claim in the case that V
is irreducible, in the sense that it contains no proper invariant subspaces.

By Lemma 11.3.3, the operation y 7→ [xss, y] is a derivation on g, thus
there exists a ∈ g such that [xss, y] = (ad a)y for all y ∈ g, thus xss − a ∈
gl(V ) centralises g. By Schur’s lemma and the hypothesis of irreducibility,
we conclude that xss − a is a multiple of a constant λ. On the other hand,
every element of g has trace zero since g = [g, g]; in particular, a and x have
trace zero, and so xss − a has trace zero. But this trace is just λ dimW , so
we conclude that xss − a has zero as its only generalised eigenvalue and is
thus nilpotent. �

This allows us to make the Jordan decomposition universal for semisim-
ple algebras:

Lemma 11.3.9 (Semisimple Jordan decomposition). Let g be a semisimple
Lie algebra, and let x ∈ g. Then we have a unique decomposition x = xss+xn
in g such that ρ(xss) = (ρ(x))ss and ρ(xn) = (ρ(x))n for every representation
ρ of g.
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Proof. As the adjoint representation is faithful we may assume without
loss of generality that g is a concrete algebra, thus g ⊂ gl(V ). The unique-
ness is then clear by taking ρ to be the identity. To obtain existence, we
take xss, xn to be the concrete Jordan decomposition. We need to verify
ρ(xss) = (ρ(x))ss and ρ(xn) = (ρ(x))n for any representation ρ : g → m.
The adjoint actions of ρ(xss) and ρ(xn) on ρ(g) commute and are semisim-
ple and nilpotent respectively and so

ad ρ(xss) = (ad ρ(x))ss; ad ρ(xn) = (ad ρ(x))n

in ad ρ(g) (cf. the proof of Lemma 11.3.1). A similar argument (applying
Corollary 11.3.8 to ρ(g), which is isomorphic to a quotient of g and is thus
semisimple, to keep ρ(x)ss, ρ(x)n in ρ(g)) gives

ad(ρ(x)ss) = (ad ρ(x))ss; ad(ρ(x)n) = (ad ρ(x))n.

Since the adjoint representation of the semisimple algebra ρ(g) is faithful,
the claim follows. �

One can also show that xss, xn commute with each other and with the
centraliser C(x) := {y ∈ g : [x, y] = 0} of x by using the faithful nature of the
adjoint representation for semisimple algebras, though we will not need these
facts here. Using this lemma we have a well-defined notion of an element x
of a semisimple algebra g being semisimple (resp. nilpotent), namely that
x = xss or x = xn. Lemma 11.3.9 then implies that any representation
of a semisimple element of g is again semisimple, and any representation
of a nilpotent element of g is again nilpotent. This apparently innocuous
statement relies heavily on the semisimple nature of g; note for instance that
the representation

t 7→
(

0 t
0 0

)
of the non-semisimple algebra C ≡ gl1 into gl2 takes semisimple elements to
nilpotent ones.

11.4. Cartan subalgebras

While simple Lie algebras do not have any non-trivial ideals, they do have
some very useful subalgebras known as Cartan subalgebras which will even-
tually turn out to be abelian and which can be used to dramatically clarify
the structure of the rest of the algebra.

We need some definitions. An element x of g is said to be regular if its
generalised null space

gx0 := {y ∈ g : (adx)ny = 0 for some n}
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has minimal dimension. A Cartan subalgebra of g is a nilpotent subalgebra
h of g which is its own normaliser , thus N(h) := {x ∈ g : [x, h] ⊂ h} is equal
to h. From the polynomial nature of the Lie algebra operations (and the
Noetherian nature of algebraic geometry) we see that the regular elements
of } are generic (i.e. they form a non-empty Zariski-open subset of g).

Example 11.4.1. In gl(V ), the regular elements consist of the semisimple
elements with distinct eigenvalues. Fixing a basis for V , the space of ele-
ments of gl(V ) that are diagonalised by that basis form a Cartan subalgebra
of gl(V ).

Cartan algebras always exist, and can be constructed as generalised null
spaces of regular elements:

Proposition 11.4.2 (Existence of Cartan subalgebras). Let g be an abstract
Lie algebra. If x ∈ g is regular, then the generalised null space h := gx0 of x
is a Cartan subalgebra.

Proof. Suppose that h is not nilpotent, then by Engel’s theorem the adjoint
action of at least one element of h on h is not nilpotent. By the polynomial
nature of the Lie algebra operations, we conclude that the adjoint action of
a generic element of h on h is not nilpotent.

The action of x on g/h is non-singular, so the action of generic elements
of h on g/h is also non-singular. Thus we can find y ∈ h such that ad y is not
nilpotent on h and not singular on g/h. From this we see that gy0 is a proper
subspace of gx0 , contradicting the regularity of x. Thus h is nilpotent.

Finally, we show that h is its own normaliser. Suppose that y ∈ g
normalises h, then (adx)y ∈ h. But h is the generalised null space of adx,
and so y ∈ h as required. �

Furthermore, all Cartan algebras arise as generalised null spaces:

Proposition 11.4.3 (Cartans are null spaces). Let g be an abstract Lie
algebra, and let h be a Cartan subalgebra. Let

gh0 = {x ∈ g : (ad h)nx = 0 for some n}

be the generalised null space of h. Then gh0 = h. Furthermore, for generic
x ∈ h, one has

h = gx0 .

Proof. As h is nilpotent, we certainly have h ⊂ gh0. Now, for any x ∈ h, adx

acts nilpotently on both gh0 and h and hence on gh0/h. By Engel’s theorem,

we can thus find y ∈ gh0/h that is annihilated by the adjoint action of h;

pulling back to gh0, we conclude that the normaliser of h is strictly larger
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than h, contradicting the hypothesis that h is a Cartan subalgebra. This

shows that gh0 = h.

Now let x ∈ h be generic, then gx0 has minimal dimension amongst x ∈ h.
Let y ∈ h be arbitrary. Then for any scalar t, ad(x + ty) acts on g and on
h and hence on g/h. This action is invertible when t = 0, and hence is also

invertible for generic t; thus for generic t, gx+ty
0 ⊂ gx0 . By minimality we

conclude that gx+ty
0 = gx0 , so ad(x+ ty) is nilpotent on gx0 for generic t, and

thus for all t. In particular ad(x+ y) is nilpotent on gx0 for any y ∈ h, thus

gx0 ⊂ gh0 = h. Since h ⊂ gx0 , we obtain h = gx0 as required. �

Corollary 11.4.4 (Cartans are conjugate). Let g be a Lie algebra, and let
h be a Cartan algebra. Then for generic x ∈ g, h is conjugate to gx0 by an
inner automorphism of g (i.e. an element of the algebraic group generated
by exp(ad y) for y ∈ g). In particular, any two Cartan subalgebras are
conjugate to each other by an inner automorphism.

Proof. Let S be the set of x′ ∈ h with h = gx
′

0 , then x′ is a Zariski open
dense subset of h by Proposition 11.4.3. Then let T be the collection of
x ∈ g that are conjugate to an x′ ∈ S, then T is a algebraically constructible
subset of g. For x′ ∈ S, observe that (adx′)(g) and h span g, since h = gx

′
0 ,

and so by the inverse function theorem, a (topological) neighbourhood of
x′ is contained in T . This implies that T is Zariski dense, and the claim
follows. �

In the case of semisimple algebras, the Cartan structure is particularly
clean:

Proposition 11.4.5. Let g be a semisimple Lie algebra. Then every Cartan
subalgebra h is abelian, and K is non-degenerate on h.

The dimension of the Cartan algebra of a semisimple Lie algebra is
known as the rank of the algebra.

Proof. The nilpotent algebra h acts via the adjoint action on g, and by
Lie’s theorem this action can be made upper triangular. From this it is not
difficult to obtain a decomposition

g =
⊕
λ∈σ(h)

ghλ

for some finite set σ(h) ⊂ h∗, where ghλ are the generalised eigenspaces

ghλ = {x ∈ g : (ad h− λ)kx = 0 for some k}.

From the Jacobi identity (11.2) we see that [ghλ, g
h
µ] ⊂ ghλ+µ. Among

other things, this shows that ghλ has ad-trace zero for any non-zero λ, and
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hence ghλ, g
h
µ are K-orthogonal if λ+µ 6= 0. In particular, gh0 is K-orthogonal

to
⊕

λ 6=0 g
h
λ. By Theorem 11.0.1, K is non-degenerate on g, and thus also

non-degenerate on gh0; by Proposition 11.4.3, K is thus non-degenerate on
h. But by Lie’s theorem, we can find a basis for which h consists of upper-
triangular matrices in the adjoint representation of g, so that [h, h] is strictly
upper-triangular and thus K-orthogonal to h. As K is non-degenerate on h,
this forces [h, h] to be abelian, as required. �

We now use the semisimple Jordan decomposition (Lemma 11.3.9) to ob-
tain a further non-degeneracy property of the Cartan subalgebras of semisim-
ple algebras:

Proposition 11.4.6. Let g be a semisimple Lie algebra. Then every Cartan
subalgebra h consists entirely of semisimple elements.

Proof. Let x ∈ h, then (by the abelian nature of h) adx annihilates h; as
adxn is a polynomial in adx with zero constant coefficient, adxn annihilates
h as well; thus xn normalises h and thus also lies in h as h is Cartan. If y ∈ h,
then y commutes with xn and so ad y commutes with adxn. As the latter is
nilpotent, we conclude that adxn ad y is nilpotent and thus has trace zero.
Thus xn is K-orthogonal to h and thus vanishes since the Killing form is
non-degenerate on h. Thus every element of h is semisimple as required. �

11.5. sl2 representations

To proceed further, we now need to perform some computations on a very
specific Lie algebra, the special linear algebra sl2 of 2× 2 complex matrices
with zero trace. This is a three-dimensional concrete Lie algebra, spanned
by the three generators

H :=

(
1 0
0 −1

)
;X :=

(
0 1
0 0

)
;Y :=

(
0 0
1 0

)
which obey the commutation relations

(11.8) [H,X] = 2X; [H,Y ] = −2Y ; [X,Y ] = H.

Conversely, any abstract three-dimensional Lie algebra generated by H,X, Y
with relations (11.8) is clearly isomorphic to sl2. One can check that this is
a simple Lie algebra, with the one-dimensional space generated by H being
a Cartan subalgebra.

Now we classify by hand the representations ρ : sl2 → gl(V ) of sl2. Ob-
serve that sl2 acts infinitesimally on R2 by the differential operators (or
vector fields)

H → x∂x − y∂y; X → x∂y; Y → y∂x.
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In particular, we see that for each natural number n, the space Pn of ho-
mogeneous polynomials in two variables x, y of degree n has a representa-
tion σn : sl2 → gl(Pn); if we give this space the basis e2i−n := xiyn−i for
i = 0, . . . , n, the action is then described by the formulae

(11.9) σn(H)ej = jej ; σn(X)ej =
n− j

2
ej+2; σn(Y )ej =

n+ j

2
ej−2

for j = n, n − 2, . . . ,−n + 2, n. From these formulae it is also easy to see
that these representations are irreducible in the sense that the Pn have no
non-trivial sl2-invariant subspaces.

Conversely, these representations (and their direct sums) describe (up
to isomorphism) all of the representations of sl2:

Theorem 11.5.1 (Representations of sl2). Any representation ρ : sl2 →
gl(V ) is isomorphic to the direct sum of finitely many of the representations
σn : sl2 → gl(Pn).

Here of course the direct sum ρ1⊕ρ2 : g→ gl(V1⊕V2) of two representa-
tions ρ1 : g→ gl(V1), ρ2 : g→ gl(V2) is defined as ρ1⊕ρ2(x) := (ρ1(x), ρ2(x)),
and two representations ρ1 : g → gl(V1), ρ2 : g → gl(V2) are isomorphic if
there is an invertible linear map φ : V1 → V2 such that φ ◦ ρ1(x) = ρ2(x) ◦ φ
for all x ∈ g.

Proof. By induction we may assume that V is non-trivial, the claim has
already been proven for any smaller dimensional spaces than V .

As H is semisimple, ρ(H) is semisimple by Lemma 11.3.9, and so we can
split V into the direct sum

V = ⊕λ∈σ(H)V
H
λ

of eigenspaces of H for some finite σ(H) ⊂ C.

From (11.8) we have the raising law

ρ(X)V H
λ ⊂ V H

λ+2

and the lowering law

ρ(Y )V H
λ ⊂ V H

λ−2

As σ(H) is finite, we may find a “highest weight” λ ∈ σ(H) with the property
that λ + 2 6∈ σ(H), thus ρ(X) annihilates V H

λ by the raising law. We
will use the basic strategy of starting from the highest weight space and
applying lowering operators to discover one of the irreducible components
of the representation.

From (11.8) one has

ρ(X)ρ(Y ) = ρ(Y )ρ(X) + ρ(H)
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and so from induction and the lowering law we see that

(11.10) ρ(X)ρ(Y )k+1v = (λ+ (λ− 2) + . . .+ (λ− 2k))ρ(Y )kv

for all natural numbers k and all v ∈ V H
λ . If λ+ (λ− 2) + . . .+ (λ− 2k) is

never zero, this creates an infinite sequence V H
λ , V H

λ−2, V
H
λ−4, . . . of non-trivial

eigenspaces, which is absurd, so we have λ+ (λ− 2) + . . .+ (λ− 2n) = 0 for
some natural number n, thus λ = n. If we then let

W :=
n⊕
k=0

ρ(Y )kV H
n

then we see that W is invariant under H, X, and Y , and thus g-invariant;
also if for each λ ∈ σ(H) we let Ṽ H

λ be the set of all v ∈ V H
λ such that

ρ(X)kv is never a non-zero element of V H
n then we see that

W̃ :=
⊕

λ∈σ(H)

Ṽ H
λ

is also g-invariant, and furthermore that W and W̃ are complementary
subspaces in V . Applying the induction hypothesis, we are done unless
W = V , but then by splitting V H

n into one-dimensional spaces and applying
the lowering operators, we see that we reduce to the case that V H

n is one-
dimensional. But if one then lets en be a generator of V H

n and recursively
defines en−2, en−4, . . . , e−n by

ρ(Y )ej =
n+ j

2
ej−2

one then checks using (11.10) that ρ is isomorphic to σn, and the claim
follows. �

Remark 11.5.2. Theorem 11.5.1 shows that all representations of sl2 are
completely reducible in that they can be decomposed as the direct sum of
irreducible representations. In fact, all representations of semisimple Lie
algebras are completely reducible; this can be proven by a variant of the
above arguments (in combination with the analysis of weights given below),
and can also be proven by the unitary trick, or by analysing the action of
Casimir elements of the universal enveloping algebra of g, as done in Section
11.9.

11.6. Root spaces

Now we use the sl2 theory to analyse more general semisimple algebras.

Let g be a semisimple Lie algebra, and let h be a Cartan algebra, then
by Proposition 11.4.5 h is abelian and acts in a semisimple fashion on g, and
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by Proposition 11.4.3 h is its own null space gh0 in the weight decomposition
of g, thus we have the Cartan decomposition

g = h⊕
⊕
α∈Φ

ghα

as vector spaces (not as Lie algebras) where Φ is a finite subset of h∗\{0}
(known as the set of roots) and ghα is the non-trivial eigenspace

(11.11) ghα = {x ∈ g : [y, x] = α(y)x for all y ∈ h}.

Example 11.6.1. A key example to keep in mind is when g = sln is the
Lie algebra of n × n matrices of trace zero. An explicit computation using
the Killing form and Theorem 11.0.1 shows that this algebra is semisimple;
in fact it is simple, but we will not show this yet. The space h of diagonal
matrices of trace zero can then be verified to be a Cartan algebra; it can
be identified with the space Cn

0 of complex n-tuples summing to zero, and
using the usual Hermitian inner product on Cn we can also identify h∗ with
Cn

0 . The roots are then of the form ei − ej for distinct 1 ≤ i, j ≤ n, where

e1, . . . , en is the standard basis for Cn, with ghei−ej being the one-dimensional

space of matrices that are vanishing except possibly at the (i, j) coefficient.

From the Jacobi identity (11.2) we see that the Lie bracket acts addi-
tively on the weights, thus

(11.12) [ghα, g
h
β] ⊂ ghα+β

for all α, β ∈ h∗. Taking traces, we conclude that

K(ghα, g
h
β) = 0

whenever α + β 6= 0. As K is non-degenerate, we conclude that if ghα is

non-trivial, then gh−α must also be non-trivial, thus Φ is symmetric around
the origin.

We also claim that Φ spans h∗ as a vector space. For if this were not the
case, then there would be a non-trivial x ∈ h that is annihilated by Φ, which

by (11.11) implies that adx annihilates all of the ghα and is thus central,
contradicting the semisimplicity of g.

From Proposition 11.4.5, K is non-degenerate on h. Thus, for each
root α ∈ Φ, there is a corresponding non-zero element tα of h such that

K(tα, x) = α(x) for all x ∈ h. If we let x ∈ ghα, y ∈ gh−α, and z ∈ gh0 = h, we
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have

K([x, y], z) = K(y, [z, x])

= K(y, α(z)x)

= α(K(x, y)z)

= K(K(x, y)tα, z)

and thus by the non-degeneracy of K on h we obtain the useful formula

(11.13) [x, y] = K(x, y)tα

for x ∈ ghα and y ∈ gh−α.

As K is non-degenerate, we can find X = Xα ∈ ghα and Y = Yα ∈
gh−α with K(X,Y ) 6= 0 (which can be found as K is non-degenerate). We
divide into two cases depending on whether α(tα) vanishes or not. If α(tα)
vanishes, then [X,Y ] is non-trivial but commutes with X and Y , and so
adX, adY generate a solvable algebra. By Lie’s theorem, this algebra is
upper-triangular in some basis, and so ad[X,Y ] is nilpotent, hence ad tα is
nilpotent; but by Proposition 11.4.6 ad tα is also semisimple, contradicting
the non-zero nature of tα (and the semisimple nature of g). Thus α(tα) is
non-vanishing. If we then scale X,Y so that [X,Y ] = H, where H = Hα is
the co-root of α, defined as the element of h given by the formula

H :=
2

α(tα)
tα

so that

(11.14) α(H) = 2,

then X,Y,H obey the relations (11.8) and thus generate a copy of sl2, rather
than a solvable algebra. The representation theory of sl2 can then be applied
to the space

(11.15)
⋃
n∈Sα

ghnα/2,

where Sα := {n ∈ R : nα/2 ∈ Φ ∪ {0}}. By (11.12), this space is invariant
with respect to x and y and hence to the copy of sl2, and by (11.11), (11.14)

each ghnα/2 is the weight space of H of weight n for each n ∈ S. By Theorem

11.5.1, we conclude that the set S consists of integers. On the other hand,
from (11.13) we see that any copy of the representation σn with n a positive
even integer must have its 0 weight space contained in the span of tα, and
so there is only one such representation in (11.15). As X,Y,H already give
a copy of σ2 in (11.15), there are no other copies of σn with n positive even,

thus we have that ghα is one-dimensional and that the only even multiples
of α/2 in Φ are ±α. In particular, 2α 6∈ Φ whenever α ∈ Φ, which also
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implies that α/2 6∈ Φ whenever α ∈ Φ. Returning to Theorem 11.5.1, we
conclude that the set Sα contains no odd integers, and so α and −α are the
only multiples of α in Φ.

Next, let β be any non-zero element of h∗ orthogonal to α with respect
to the inner product 〈, 〉 of h∗ that is dual to the restriction of the Killing
form to h, and consider the space

(11.16)
⋃

n∈Sα,β

ghβ+nα/2

where

Sα,β := {n ∈ R : β + nα/2 ∈ Φ}.
By (11.12), this is again an sl2-invariant space, and by (11.11), (11.14) each

ghβ+nα/2 is the weight space of H of weight n. From Theorem 11.5.1 we

see that Sα,β is an arithmetic progression {−m,−m + 2, . . . ,m − 2,m} of
spacing 2; in particular, Sα,β is symmetric around the origin and consists
only of integers. This implies that the set Φ is symmetric with respect to
reflection across the hyperplane that is orthogonal to α, and also implies
that

2
〈α, β〉
〈α, α〉

∈ Z

for all roots α, β ∈ Φ.

We summarise the various geometric properties of Φ as follows:

Proposition 11.6.2 (Root systems). Let g be a semisimple Lie algebra, let
h be a Cartan subalgebra, and let 〈, 〉 be the inner product on h∗ that is dual
to the Killing form restricted to h. Let Φ ⊂ h∗ be the set of roots. Then:

(i) Φ does not contain zero.

(ii) If α is a root, then Φ is symmetric with respect to the reflection
operation sα : h∗ → h∗ across the hyperplane orthogonal to α; in
particular, −α is also a root.

(iii) If α is a root, then no multiple of α other than ±α are roots.

(iv) If α, β are roots, then 〈α,β〉
〈α,α〉 is an integer or half-integer. Equiva-

lently, sα(β) = β +mα for some integer m.

(v) Φ spans h∗.

A set of vectors Φ obeying the above axioms (i)-(v) is known as a root
system on h∗ (viewed as a finite dimensional complex Hilbert space with the
inner product 〈, 〉).

Remark 11.6.3. A short calculation reveals the remarkable fact that if Φ
is a root system, then the associated system of co-roots {Hα : α ∈ Φ} is also
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a root system. This is one of the starting points for the deep phenomenon
of Langlands duality, which we will not discuss here.

When g is simple, one can impose a useful additional axiom on Φ. Say
that a root system Φ is irreducible if Φ cannot be covered by the union
V ∪W of two orthogonal proper subspaces of h∗.

Lemma 11.6.4. If g is a simple Lie algebra, then the root system of Φ is
irreducible.

Proof. If Φ can be covered by two orthogonal subspaces V ∪W , then if we
consider the subspace of g

V ⊕
⊕

α∈Φ∩V
ghα

where we use the inner product 〈, 〉 to identify h∗ with h and thus V with
a subspace of h (thus for instance this identifies α with tα), then one can
check using (11.12) and (11.13) that this is a proper ideal of g, contradicting
simplicity. �

It is easy to see that every root system is expressible as the union of
irreducible root systems (on orthogonal subspaces of h∗). As it turns out,
the irreducible root systems are completely classified, with the complete list
of root systems (up to isomorphism) being described in terms of the Dynkin
diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, G2 briefly mentioned in Theorem
11.0.2. We will now turn to this classification in the next section, and then
use root systems to recover the Lie algebra.

11.7. Classification of root systems

In this section we classify all the irreducible root systems Φ on a finite
dimensional complex Hilbert space h∗, up to Hilbert space isometry. Of
course, we may take h∗ to be a standard complex Hilbert space Cn without
loss of generality. The arguments here are purely elementary, proceeding
purely from the root system axioms rather than from any Lie algebra theory.

Actually, we can quickly pass from the complex setting to the real set-
ting. By axiom (v), Φ contains a basis α1, . . . , αn of Cn; by axiom (iv), the
inner products between these basis vectors are real, as are the inner prod-
ucts between any other root and a basis root. From this we see that Φ lies
in the real vector space spanned by the basis roots, so by a change of basis
we may assume without loss of generality that Φ ⊂ Rn.

Henceforth Φ is assumed to lie in Rn. From two applications of (iv) we
see that for any two roots α, β, the expression

〈α, β〉
〈α, α〉

〈α, β〉
〈β, β〉
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lies in 1
4Z; but it is also equal to cos2∠(α, β), and hence

cos2∠(α, β) ∈ {0, 1

4
,
1

2
,
3

4
, 1}

for all roots α, β. Analysing these cases further using (iv) again, we conclude
that there are only a restricted range of options for a pair of roots α, β:

Lemma 11.7.1. Let α, β be roots. Then one of the following occurs:

(0) β and α are orthogonal.

(1/4) α, β have the same length and subtend an angle of π/3 or 2π/3.

(1/2) α has
√

2 times the length of β or vice versa, and α, β subtend an
angle of π/4 or 3π/4.

(3/4) α has
√

3 times the length of β or vice versa, and α, β subtend an
angle of π/6 or 5π/6.

(1) β = ±α.

We next record a useful corollary of Lemma 11.7.1 (and axiom (ii)):

Corollary 11.7.2. Let α, β be roots. If α, β subtend an acute angle, then
α− β and β−α are also roots, but α+ β is not a root. Equivalently, if α, β
subtend an obtuse angle, then α+ β is a root, but α− β and β − α are not
roots.

This follows from a routine case analysis and is omitted.

We can leverage Corollary 11.7.2 as follows. Call an element h of Rn

regular if it is not orthogonal to any root, thus generic elements of Rn are
regular. Given a regular element h, let Φ+

h := {α ∈ Φ : 〈α, h〉 > 0} denote
the roots α which are h-positive in the sense that their inner product with
h is positive; thus Φ is partitioned into Φ+

h and −Φ+
h . We will abbreviate

h-positive as positive if h is understood from context. Call a positive root
α ∈ Φ+

h a h-simple root (or simple root for short) if it cannot be written as
the sum of two positive roots. Clearly every positive root is then a linear
combination of simple roots with natural number coefficients. By Corollary
11.7.2, two simple roots cannot subtend an acute angle, and so any two
distinct simple roots subtend a right or obtuse angle.

Example 11.7.3. Using the root system {ei−ej : 1 ≤ i, j ≤ n; i 6= j} of sln
discussed previously, if one takes h to be any vector in Cn

0 with decreasing
coefficients, then the positive roots are those roots ei − ej with i < j, and
the simple roots are the roots ei − ei+1 for 1 ≤ i < n.

Define an admissible configuration to be a collection of unit vectors in
Rn in a open half-space {v : 〈v, h〉 > 0} with the property that any two
vectors in this collection form an angle of π/2, 2π/3, 3π/4, or 5π/6, and call



11.7. Classification of root systems 255

the configuration irreducible if it cannot be decomposed into two non-empty
orthogonal subsets. From Lemma 11.7.1 and the above discussion we see
that the unit vectors α/‖α‖ associated to the simple roots are an admissible
configuration. They are also irreducible, for if the simple roots partition
into two orthogonal sets then it is not hard to show (using Corollary 11.7.2)
that all positive roots lie in the span of one of these two sets, contradicting
irreducibility of the root system.

We can say quite a bit about admissible configurations; the fact that the
vectors in the system always subtend right or obtuse angles, combined with
the half-space restriction, is quite limiting (basically because this informa-
tion can be in violation of inequalities such as the Bessel inequality, or the
positive (semi-)definiteness ‖

∑
i civi‖2 ≥ 0 of the Gram matrix ). We begin

with an assertion of linear independence:

Lemma 11.7.4. If v1, . . . , vn is an admissible configuration, then it is lin-
early independent.

Among other things, this shows that the number of simple roots of a
semisimple Lie algebra is equal to the rank of that algebra.

Proof. Suppose this is not the case, then one has a non-trivial linear con-
straint ∑

i∈A
civi =

∑
j∈B

cjvj

for some positive ci, cj and disjoint A,B ⊂ {1, . . . , n}. But as any two
vectors in an admissible configuration subtend a right or obtuse angle,
〈
∑

i∈A civi,
∑

j∈B cjvj〉 ≤ 0, and thus
∑

i∈A civi =
∑

j∈B cjvj = 0. But
this is not possible as all the vi lie in an open half-space. �

Define the Coxeter diagram of an admissible configuration v1, . . . , vn
to be the graph with vertices v1, . . . , vn, and with any two vertices vi, vj
connected by an edge of multiplicity 4 cos2∠vi, vj , thus two vertices are
unconnected if they are orthogonal, connected with a single edge if they
subtend an angle of 2π/3, a double edge if they subtend an angle of 3π/4,
and a triple edge if they subtend an angle of 5π/6. The irreducibility of a
configuration is equivalent to the connectedness of a Coxeter diagram. Note
that the Coxeter diagram describes all the inner products between the vi
and thus describes the vi up to an orthogonal transformation (as can be seen
for instance by applying the Gram-Schmidt process).

Lemma 11.7.5. The Coxeter diagram of an admissible configuration does
not contain a cycle; in other words, it is acyclic. In particular, the Coxeter
diagram of an irreducible admissible configuration is a tree.
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Proof. Suppose for contradiction that the Coxeter diagram contains a cycle
v1, . . . , vn, we see that 〈vi, vi+1〉 ≤ −1

2 for i = 1, . . . , n (with the convention

vn+1 = v1) and 〈vi, vj〉 ≤ 0 for all other i. This implies that ‖
∑n

i=1 vi‖2 ≤ 0,
which contradicts the linear independence of the vi. �

Lemma 11.7.6. Any vertex in the Coxeter diagram has degree at most three
(counting multiplicity).

Proof. Let v0 be a vertex which is adjacent to some other vertices v1, . . . , vd,
which are then an orthonormal system. By Bessel’s inequality (and linear
independence) one has

d∑
i=1

〈v0, vi〉2 < 1.

But from construction of the Coxeter diagram we have 〈v0, vi〉2 = −mi
4 for

each i, where mi ∈ {1, 2, 3} is the multiplicity of the edge connecting v0 and
vi. The claim follows. �

We can also contract simple edges:

Lemma 11.7.7. If v1, . . . , vn is an admissible configuration with vi, vj joined
by a single edge, then the configuration formed from v1, . . . , vn by replacing
vi, vj with the single vertex vi+vj is again an admissible configuration, with
the resulting Coxeter diagram formed from the original Coxeter diagram by
deleting the edge between vi and vj and then identifying vi, vj together.

This follows easily from acyclicity and direct computation.

By Lemma 11.7.6 and Lemma 11.7.7, the Coxeter diagram can never
form a vertex of degree three no matter how many simple edges are con-
tracted. From this we can easily show that connected Coxeter diagrams
must have one of the following shapes:

(An) n vertices joined in a chain of simple edges;

(BCFn) n vertices joined in a chain of edges, one of which is a double edge
and all others are simple edges;

(DEn) three chains of simple edges emenating from a common vertex
(forming a “Y” shape), connecting n vertices in all;

(G2) Two vertices joined by a triple edge.

We can cut down the BCFn and DEn cases further:

Lemma 11.7.8. The Coxeter diagram of an admissible configuration cannot
contain as a subgraph

(a) A chain of four edges, with one of the interior edges a double edge;
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(b) Three chains of two simple edges each, emenating from a common
vertex;

(c) Three chains of simple edges of length 1, 2, 5 respectively, emenating
from a common vertex.

Proof. To exclude (a), suppose for contradiction that we have two chains
(u1, u2) and (v1, v2, v3) of simple edges, with u2, v3 joined by a double edge.
Writing U := 1√

3
(u1 + 2u2) and V := 1√

6
(v1 + 2v2 + 3v3), one computes that

U, V are unit vectors with inner product 〈U, V 〉 = −1, implying that U, V
are parallel, contradicting linear independence.

To exclude (b), suppose that we have three chains (u1, u2, x), (v1, v2, x),
(w1, w2, x) of simple edges joined at x. Then the vectors U := 1√

3
(u1 +

2u2), V := 1√
3
(v1 + 2v2),W := 1√

3
(w1 + 2w2) are an orthonormal system

that each have an inner product of −1/
√

3 each with x. Comparing this
with Bessel’s inequality we conclude that x lies in the span of U, V,W ,
contradicting linear independence.

Finally, to exclude (c), suppose we have three chains (u1, x), (v1, v2, x),
(w1, w2, w3, w4, w5, x) of simple edges joined at x. Writing U := u1, V :=

1√
3
(v1+2v2), W := 1√

15
(w1+2w2+3w3+4w4+5w5), we compute that U, V,W

are an orthonormal system that have inner products of −1/2,−1/
√

3,− 5√
60

respectively with x. As 1
4 + 1

3 + 25
60 = 1, this forces x to lie in the span of

U, V,W , again contradicting linear independence. �

We remark that one could also obtain the required contradictions in
the above proof by verifying in all three cases that the Gram matrix of the
subconfiguration has determinant zero.

Corollary 11.7.9. The Coxeter diagram of an irreducible admissible con-
figuration must take one of the following forms:

(An) n vertices joined in a chain of simple edges for some n ≥ 1;

(BCn) n vertices joined in a chain of edges for some n ≥ 2, with one
boundary edge being a double edge and all other edges simple;

(Dn) Three chains of simple edges of length 1, 1, n − 3 respectively for
some n ≥ 4, emenating from a single vertex;

(En) Three chains of simple edges of length 1, 2, n − 4 respectively for
some n = 6, 7, 8, emenating from a single vertex;

(F4) Four vertices joined in a chain of edges, with the middle edge being
a double edge and the other two edges simple;

(G2) Two vertices joined by a triple edge.
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Figure 1. The Dynkin diagrams.

Now we return to root systems. Fixing a regular h, we define the Dynkin
diagram to be the Coxeter diagram associated to the (unit vectors of the)
simple roots, except that we orient the double or triple edges to point from
the longer root to the shorter root. (Note from Lemma 11.7.1 that we know
exactly what the ratio between lengths is in these cases; in particular, the
Dynkin diagram describes the root system up to a unitary transformation
and dilation.) We conclude

Corollary 11.7.10. The Dynkin diagram of an irreducible root system must
take one of the following forms:

(An) n vertices joined in a chain of simple edges for some n ≥ 1;

(Bn) n vertices joined in a chain of edges for some n ≥ 2, with one
boundary edge being a double edge (pointing outward) and all other
edges simple;

(Cn) n vertices joined in a chain of edges for some n ≥ 3, with one
boundary edge being a double edge (pointing inward) and all other
edges simple;

(Dn) Three chains of simple edges of length 1, 1, n − 3 respectively for
some n ≥ 4, emenating from a single vertex;

(En) Three chains of simple edges of length 1, 2, n − 4 respectively for
some n = 6, 7, 8, emenating from a single vertex;

(F4) Four vertices joined in a chain of edges, with the middle edge being
a double (oriented) edge and the other two edges simple;

(G2) Two vertices joined by a triple (oriented) edge.

This describes (up to isomorphism and dilation) the simple roots:

(An) The simple roots take the form ei − ei+1 for 1 ≤ i ≤ n + 1 in the
space Cn+1

0 of vectors whose coefficients sum to zero;
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(Bn) The simple roots take the form ei− ei+1 for 1 ≤ i ≤ n− 1 and also
en in Cn.

(Cn) The simple roots take the form ei− ei+1 for 1 ≤ i ≤ n− 1 and also
2en in Cn.

(Dn) The simple roots take the form ei− ei+1 for 1 ≤ i ≤ n− 1 and also
en−1 + en in Cn.

(E8) The simple roots take the form ei − ei+1 for 1 ≤ i ≤ 6 and also

e6 + e7 and −1
2

∑8
i=1 ei in C8.

(E6, E7) This system is obtained from E8 by deleting the first one or two
simple roots (and cutting down C8 appropriately)

(F4) The simple roots take the form ei − ei+1 for 1 ≤ i ≤ 2 and also e3

and −1
2

∑4
i=1 ei in C4.

(G2) The simple roots take the form e1 − e2, e3 − 2e2 + e1 in C3
0.

Remark 11.7.11. A slightly different way to reach the classification is
to replace the Dynkin diagram by the extended Dynkin diagram in which
one also adds the maximal negative root in addition to the simple roots;
this breaks the linear independence, but one can then label each vertex by
the coefficient in the linear combination needed to make the roots sum to
zero, and one can then analyse these multiplicities to classify the possible
diagrams and thence the root systems.

Now we show how the simple roots can be used to recover the entire
root system. Define the Weyl group W to be the group generated by all the
reflections sα coming from all the roots α; as the roots span Rn and obey
axiom (ii), the Weyl group acts faithfully on the finite set Φ and is thus
itself finite.

Lemma 11.7.12. Let h be regular, and let h′ be any element of Rn. Then
there exists w ∈ W such that 〈w(h′), α〉 ≥ 0 for all h-simple roots α (or
equivalently, for all h-positive roots α). In particular, if h′ is regular, then
Φ+
w(h′) = Φ+

h , so that all h-simple roots are w(h′)-simple and vice versa.

Furthermore, every root can be mapped by an element of W to an h-
simple root.

Finally, W is generated by the reflections sα coming from the h-simple
roots α.

Proof. Let α be a simple root. The action of the reflection sα maps α to
−α, and maps all other simple roots β to β +mα for some non-negative m
(since α, β subtend a right or obtuse angle). In particular, we see that sα
maps all positive roots other than α to positive roots, and hence (as sα is
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an involution)
sα(Φ+

h ) = Φ+
h ∪ {−α}\{α}.

In particular, if we define ρ := 1
2

∑
β∈Φ+

h
β, then

(11.17) sα(ρ) = ρ− α
for all simple roots α.

Let Wh be the subgroup of W generated by the sα for the simple roots
α, and choose w ∈ Wh to maximise 〈w(h′), ρ〉. Then from (11.17) we have
〈w(h′), α〉 ≥ 0, giving the first claim. Since every root α is h′-simple for some
regular h′ (by selecting h′ to very nearly be orthogonal to α), we conclude
that every root can be mapped by an element of Wh to a h-simple root in
h, giving the second claim. Thus for any root β, sβ is conjugate in Wh to a
reflection sα for a h-simple root α, so sβ lies in Wh and so W = Wh, giving
the final claim. �

Remark 11.7.13. The set of all h′ for which Φ+
h′ = Φ+

h is known as the
Weyl chamber associated to h; this is an open polyhedral cone in Rn, and
the above lemma shows that it is the interior of a fundamental domain of
the action of the Weyl group. In the case of the special linear group, the
standard Weyl chamber (in Rn

0 now instead of Rn) would be the set of
vectors h′ ∈ Rn

0 with decreasing coefficients.

From the above lemma we can reconstruct the root system from the sim-
ple roots by using the reflections sα associated to the simple roots to generate
the Weyl group W , and then applying the Weyl group to the simple roots
to recover all the roots. Note that the lemma also shows that the set of
h-simple roots and h′-simple roots are isomorphic for any regular h, h′, so
that the Dynkin diagram is indeed independent (up to isomorphism) of the
choice of regular element h as claimed earlier. We have thus in principle de-
scribed the irreducible root systems (up to isomorphism) as coming from the
Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, G2; see for instance [FuHa]
for explicit descriptions of all of these. With these explicit descriptions one
can verify that all of these systems are indeed irreducible root systems.

11.8. Chevalley bases

Now that we have described root systems, we use them to reconstruct Lie
algebras. We first begin with an abstract uniqueness result that shows that
a simple Lie algebra is determined up to isomorphism by its root system.

Theorem 11.8.1 (Root system uniquely determines a simple Lie algebra).

Let g, g̃ be simple Lie algebras with Cartan subalgebras h, h̃ and root systems
Φ ⊂ h∗, Φ̃ ⊂ h̃∗. Suppose that one can identify h with h̃ as vector spaces
in such a way that the root systems agree: Φ = Φ̃. Then the identification
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between h and h̃ can be extended to an identification of g and g̃ as Lie
algebras.

Proof. First we note from (11.11) and the identification Φ = Φ̃ that the

Killing forms on h and h̃ agree, so we will identify h, h̃ as Hilbert spaces, not
just as vector spaces.

The strategy will be exploit a Lie algebra version of the Goursat lemma
(or the Schur lemma), finding a sufficiently “non-degenerate” subalgebra k
of g⊕g̃ and using the simple nature of g and g̃ to show that this subalgebra is
the graph of an isomorphism from g to g̃. This strategy will follow the same
general strategy used in Theorem 11.5.1, namely to start with a “highest
weight” space and apply lowering operators to discover the required graph.

We turn to the details. Pick a regular element h of h = h̃, so that one
has a notion of a positive root. For every simple root α, we select non-zero

elements Xα, Yα, of ghα, g
h
−α respectively such that

(11.18) [Xα, Yα] = Hα

where Hα is the co-root of α; similarly select X̃α, Ỹα in g̃hα, g̃
h
−α, and set

X ′α := Xα ⊕ X̃α and Y ′α := Yα ⊕ Ỹα. Let k be the subalgebra of g ⊕ g′

generated by the X ′α and Y ′α. It is not hard to see that the Xα, Yα generate
g as a Lie algebra, so k surjects onto g; similarly k surjects onto g′.

Let β be a maximal root, that is to say a root such that β + α is not
a root for any positive α; such a root always exists. (It is in fact unique,
though we will not need this fact here.) Then we have one-dimensional

spaces ghβ and g̃hβ, and thus a two-dimensional subspace ghβ ⊕ g̃hβ in g ⊕ g̃.

Inside this subspace, we select a one-dimensional subspace L which is not

equal to ghβ ⊕ 0 or 0× g̃hβ; in particular, L is not contained in g⊕ 0 or 0⊕ g̃.

Let l be the subspace of g⊕ g′ generated by L and the adjoint action of
the lowering operators Y ′α, thus it is spanned by elements of the form

(11.19) adY ′α1
. . . adY ′αkx

for simple roots α1, . . . , αk and x ∈ L. Then l contains L and is thus not
contained in g ⊕ 0, 0 ⊕ g̃; because (11.19) only involves lowering operators,

we also see that L does not contain any other element of ghβ ⊕ g̃hβ other than

l. In particular, L is not all of g⊕ g̃.

Clearly l is closed under the adjoint action of the lowering operators
Y ′α. We claim that it is also closed under the adjoint action of the raising
operators X ′α. To see this, first observe that X ′α, Y

′
γ commute when α, γ are

distinct simple roots, because α−β cannot be a root (since this would make
one of α, γ non-simple). Next, from (11.18) we see that adX ′α adY ′α acts as
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a scalar on any element of the form (11.19), while from the maximality of β
we see that adX ′α annihilates x. From this the claim easily follows.

As l is closed under the adjoint action of both the X ′α and the Y ′α, we
have [k, l] ⊂ l. Projecting onto g, we see that the projection of l is an ideal
of g, and is hence 0 or g as g is simple. As l is not contained in 0⊕ g̃, we see
that l surjects onto g; similarly it surjects onto g̃. An analogous argument
shows that the intersection of l with g⊕0 is either 0 or g⊕0; the latter would
force l = g⊕ g̃ by the surjective projection onto g̃, which was already ruled
out. Thus l has trivial intersection with g⊕ 0, and similarly with 0⊕ g̃, and
is thus a graph. Such a graph cannot be an ideal of g⊕ g̃, so that k 6= g⊕ g̃.
As k was a subalgebra that surjected onto both g and g̃, we conclude by
arguing as before that k is also a graph; as k is a Lie algebra, the graph is
that of a Lie algebra isomorphism. Since [X ′α, Y

′
α] = Hα ⊕Hα, we see that

k restricts to the graph of the identity on h, and the claim follows. �

Remark 11.8.2. The above arguments show that every root can be ob-
tained from the maximal root by iteratively subtracting off simple roots
(while staying in Φ∪ {0}), which among other things implies that the max-
imal root is unique. These facts can also be established directly from the
axioms of a root system (or from the classification of root systems), but we
will not do so here. By using Theorem 11.8.1, one can convert graph auto-
morphisms of the Dynkin diagram (e.g. the automorphism sending the An
Dynkin diagram to its inverse, or the triality automorphism that rotates the
D4 diagram) to automorphisms of the Lie algebra; these are important in
the theory of twisted groups of Lie type, and more specifically the Steinberg
groups and Suzuki-Ree groups; see Section 12.3.

Remark 11.8.3. In a converse direction, once one establishes that in an
irreducible root system Φ that every root can be obtained from the maximal
root by subtracting off simple roots (while staying in Φ ∪ {0}), this shows
that any Lie algebra g associated to this system is necessarily simple. Indeed,
given any non-trivial ideal h in g and a non-trivial element x of h, one locates
a minimal element of Φ ∪ {0} in which x has a non-trivial component, then
iteratively applies raising operators to then locate a non-trivial element of
the root space of the maximal root in h; if one then applies lowering operators
one recovers all the other root spaces, so that h = g.

Theorem 11.8.1, when combined with the results from previous sections,
already gives Theorem 11.0.2, but without a fully explicit way to determine
the Lie algebras An, Bn, Cn, Dn, E6, E7, E8, F4, G2 listed in that theorem (or
even to establish whether these systems exist at all). In the case of the clas-
sical Lie algebras An, Bn, Cn, Dn, one can explicitly describe these algebras
in terms of the special linear algebras sln, special orthogonal algebras son,
and symplectic algebras spn, but this does not give too much guidance as
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to how to explicitly describe the exceptional Lie algebras E6, E7, E8, F4, G2.
We now turn to the question of how to explicitly describe all the simple Lie
algebras in a unified fashion.

Let g be a simple Lie algebra, with Cartan algebra h. We view h as a
Hilbert space with the Killing form, and then identify this space with its
dual h∗. Thus for instance the coroot Hα of a root α ∈ h∗ ≡ h is now given
by the simpler formula

(11.20) Hα =
2

〈α, α〉
α.

Let Φ ⊂ h∗ ≡ h be the root system, which is irreducible. As described
in Section 11.6, we have the vector space decomposition

g ≡ h⊕
⊕
α∈Φ

ghα

where the spaces ghα are one-dimensional, thus we can choose a generator Eα
for each ghα, though we have the freedom to multiply each Eα by a complex
constant, which we will take advantage of to perform various normalisations.
A basis for algebra h together with the Eα then form a basis for g, known
as a Cartan-Weyl basis for this Lie algebra. From (11.11), (11.20) we have

[Hα, Eβ] = Aα,βEβ

where Aα,β is the quantity

Aα,β :=
2〈α, β〉
〈α, α〉

which is always an integer because Φ is a root system (indeed Aα,β takes val-
ues in {0,±1,±2,±3}, and form an interesting matrix known as the Cartan
matrix ).

As discussed in Section 11.6, [Eα, E−α] is a multiple of the coroot Hα;
by adjusting Eα, E−α for each pair {α,−α} we may normalise things so that

(11.21) [Eα, E−α] = Hα

for all α (here we use the fact that H−α = −Hα to avoid inconsistency).
Next, we see from (11.19) that

[Eα, Eβ] = 0

if α+ β 6∈ Φ ∪ {0}, and

(11.22) [Eα, Eβ] = Nα,βEα+β

for some complex number Nα,β if α + β ∈ Φ. By considering the action of
Eα on (11.16) using Theorem 11.5.1 one can verify that Nα,β is non-zero;
however, its value is not yet fully determined because there is still residual
freedom to normalise the Eα. Indeed, one has the freedom to multiply
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Eα by any non-zero complex scalar cα as long as c−α = c−1
α (to preserve

the normalisation (11.21)), in which case the structure constant Nα,β gets
transformed according to the law

(11.23) Nα,β 7→
cαcβ
cα+β

Nα,β.

However, observe that the combined structure constant Nα,βN−α,−β is un-
changed by this rescaling. And indeed there is an explicit formula for this
quantity:

Lemma 11.8.4. For any roots α, β with α+ β ∈ Φ, one has

Nα,βN−α,−β = (r + 1)2

where β − rα, . . . , β, . . . , β + qα are the string of roots of the form β + mα
for integer m.

This formula can be confirmed by an explicit computation using The-
orem 11.5.1 (using, say, the standard basis for Pn to select Eβ+mα, which
then fixes E−β−mα by (11.21)); we omit the details.

On the other hand, we have the following clever renormalisation trick of
Chevalley, exploiting the abstract isomorphism from Theorem 11.8.1:

Lemma 11.8.5 (Chevalley normalisation). There exist choices of Eα such
that

Nα,β = N−α,−β

for all roots α, β with α+ β ∈ Φ.

Proof. We first select Eα arbitrarily, then we will have

Nα,β = aα,βN−α,−β

for some non-zero aα,β for all roots α, β. The plan is then to locate co-
efficients cα so that the transformation (11.23) eliminates all of the aα,β
factors.

To do this, observe that we may identify h with itself and Φ with itself
via the negation map x 7→ −x for x ∈ h and α 7→ −α for α ∈ Φ. From this
and Theorem 11.8.1, we may find a Lie algebra isomorphism φ : g→ g that

maps x to −x on h, and thus maps ghα to gh−α for any root α. In particular,
we have

φ(Eα) = bαE−α

for some non-zero coefficients bα; from (11.21) we see in particular that

(11.24) bαb−α = 1.

If we then apply φ to (11.22), we conclude that

bαbβN−α,−β = bα+βNα,β
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when α+ β is a root, so that aα,β takes the special form

aα,β =
bαbβ
bα+β

.

If we then select cα so that
cα = bαc−α

for all roots α (this is possible thanks to (11.24)), then the transformation
(11.23) eliminates aα,β as desired. �

From the above two lemmas, we see that we can select a special Cartan-
Weyl basis, known as a Chevalley basis, such that

(11.25) [Eα, Eβ] = ±(r + 1)Eα+β

whenever α+ β is a root; in particular, the structure constants Nα,β are all
integers, which is a crucial fact when one wishes to construct Lie algebras
and Chevalley groups over fields of arbitrary characteristic. This comes
very close to fully describing the Lie algebra structure associated to a given
Dynkin diagram, except that one still has to select the signs ± in (11.25) so
that one actually gets a Lie algebra (i.e. that the Jacobi identity (11.1) is
obeyed). This turns out to be non-trivial; see3 [Ti1972] for details. Among
other things, this construction shows that every root system actually creates
a Lie algebra (thus far we have only established uniqueness, not existence),
though once one has the classification one could also build a Lie algebra
explicitly for each Dynkin diagram by hand (in particular, one can build
the simply laced classical Lie algebras An, Dn and the maximal simply laced
exceptional algebra E8, and construct the remaining Lie algebras by taking
fixed points of suitable involutions; see, e.g., [BoHaReSe2011] for this
approach).

11.9. Casimirs and complete reducibility

Finally, we supply a proof of the following fact, used in the proof of Corollary
11.3.8:

Theorem 11.9.1 (Weyl’s complete reducibility theorem). Let g ⊂ gl(V ) be
a simple Lie algebra, and let W be a g-invariant subspace of V . Then there
exists a complementary g-invariant subspace W ′ such that V = W ⊕W ′.

Among other things, Theorem 11.9.1 shows that every finite-dimensional
linear representation of g splits into the direct sum of irreducible representa-
tions, which explains the terminology. The claim is also true for semisimple

3There are other approaches to demonstrate existence of a Lie algebra associated to a given
root system; one popular one proceeds using the Chevalley-Serre relations, see, e.g., [Se1966].

There is still a certain amount of freedom to select the signs, but this ambiguity can be described
precisely; see [Ca1993] for details.
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Lie algebras g, but we will only need the simple case here, which allows for
some minor simplifications to the argument.

The proof of this theorem requires a variant B : g → ×g → C of the
Killing form associated to V , defined by the formula

(11.26) B(x, y) := tr(xy),

and a certain element of gl(V ) associated to this form known as the Casimir
operator. We first need to establish a variant of Theorem 11.0.1:

Proposition 11.9.2. With the hypotheses of Theorem 11.9.1, B is non-
degenerate.

Proof. This is a routine modification of Proposition 11.3.2 (one simply
omits the use of the adjoint representation). �

Once one establishes non-degeneracy, one can then define the Casimir
operator C ∈ gl(V ) by setting

C :=

n∑
i=1

eifi

whenever e1, . . . , en is a basis of g and f1, . . . , fn is its dual basis, thus
B(ei, fj) = δij where δij is the Kronecker delta. It is easy to see that
this definition does not depend on the choice of basis, which in turn (by
infinitesimally conjugating both bases by an element x of the algebra g)
implies that C commutes with every element x of g.

On the other hand, C does not vanish entirely. Indeed, taking traces
and using (11.26) we see that

(11.27) tr(C) = dim(g).

This already gives an important special case of Theorem 11.9.1:

Proposition 11.9.3. Theorem 11.9.1 is true when W has codimension one
and is irreducible.

Proof. The Lie algebra g acts on the one-dimensional space V/W ; since
g = [g, g] (from the simplicity hypothesis), we conclude that this action is
trivial. In other words, each element of g maps V to W , so the Casimir
operator C does as well. In particular, the trace of C on V is the same as
the trace of C on W . On the other hand, by Schur’s lemma, C is a constant
on W ; applying (11.27), we conclude that this constant is non-zero. Thus
C is non-degenerate on W , but is not full rank on V as it maps V to W .
Thus it must have a one-dimensional null-space W ′ which is complementary
to W . As C commutes with g, W ′ is g-invariant, and the claim follows. �
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We can then remove the irreducibility hypothesis:

Proposition 11.9.4 (Whitehead’s lemma). Theorem 11.9.1 is true when
W has codimension one.

Proof. We induct on the dimension of W (or V ). If W is irreducible then
we are already done, so suppose that W has a proper invariant subspace
U . Then W/U has codimension one in V/U , so by the induction hypothesis
W/U is complemented by a one-dimensional invariant subspace Y of V/U ,
which lifts to an invariant subspace Z of V in which U has codimension one.
By the induction hypothesis again, U is complemented by a one-dimensional
invariant subspace W ′ in Z, and it is then easy to see that W ′ also comple-
ments W in V , and the claim follows. �

Next, we remove the codimension one hypothesis instead:

Proposition 11.9.5. Theorem 11.9.1 is true when W is irreducible.

Proof. Let A be the space of linear maps T : V →W whose restriction to W
is a constant multiple of the identity, and let B be the subalgebra of A whose
restriction to W vanishes. Then A,B are g-invariant (using the Lie bracket
action), and B has codimension one in A. Applying Proposition 11.9.4
(pushing g forward to gl(A), and treating the degenerate case when gl(A)
vanishes separately) we see that B is complemented by a one-dimensional
invariant subspace B′ of A. Thus there exist T ∈ A that does not lie in B,
and which commutes with every element of g. The kernel W ′ of T is then
an invariant complement of W in V , and the claim follows. �

Applying the induction argument used to prove Proposition 11.9.4, we
now obtain Theorem 11.9.1 in full generality.





Chapter 12

Notes on groups of Lie
type

In Chapter 11 we reviewed the structural theory of finite-dimensional com-
plex Lie algebras (or Lie algebras for short), with a particular focus on those
Lie algebras which were semisimple or simple. In particular, we discussed
the Weyl complete reducibility theorem (asserting that semisimple Lie al-
gebras are the direct sum of simple Lie algebras) and the classification of
simple Lie algebras (with all such Lie algebras being (up to isomorphism)
of the form An, Bn, Cn, Dn, E6, E7, E8, F4, or G2).

Among other things, the structural theory of Lie algebras can then be
used to build analogous structures in nearby areas of mathematics, such
as Lie groups and Lie algebras over more general fields than the complex
field C (leading in particular to the notion of a Chevalley group), as well
as finite simple groups of Lie type, which form the bulk of the classification
of finite simple groups (with the exception of the alternating groups and a
finite number of sporadic groups).

In the case of complex Lie groups, it turns out that every simple Lie al-
gebra g is associated with a finite number of connected complex Lie groups,
ranging from a “minimal” Lie group Gad (the adjoint form of the Lie

group) to a “maximal” Lie group G̃ (the simply connected form of the Lie
group) that finitely covers Gad, and occasionally also a number of inter-
mediate forms which finitely cover Gad, but are in turn finitely covered
by G̃. For instance, sln(C) is associated with the projective special linear
group PSLn(C) = PGLn(C) as its adjoint form and the special linear group

269
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SLn(C) as its simply connected form, and intermediate groups can be cre-
ated by quotienting out SLn(C) by some subgroup of its centre (which is
isomorphic to the nth roots of unity). The minimal form Gad is simple in the
group-theoretic sense of having no normal subgroups, but the other forms of
the Lie group are merely quasisimple, although traditionally all of the forms
of a Lie group associated to a simple Lie algebra are known as simple Lie
groups.

Thanks to the work of Chevalley, a very similar story holds for over
arbitrary fields k; given any Dynkin diagram, one can define a simple Lie
algebra with that diagram over that field, and also one can find a finite
number of groups over k (known as Chevalley groups) associated to that
diagram, ranging from an adjoint group Gad,k to a universal group Gu,k.
Thus, for instance, one could construct the universal form E7(q)u of the
E7 algebraic group over a finite field Fq of finite order. In the case that
ki s algebraically closed, the Chevalley groups are algebraic groups over k,
in whichcase we refer to these groups as forms associated to the Dynkin
diagram, with every form having an isogeny (the analogue of a finite cover
for algebraic groups) to the adjoint form, and in turn receiving an isogeny
from the universal form.

When one restricts the Chevalley group construction to adjoint groups
over a finite field (e.g. PSLn(Fq)), one usually obtains a finite simple group
(with a finite number of exceptions when the rank and the field are very
small, and in some cases one also has to pass to a bounded index subgroup,
such as the derived group, first). One could also use other versions of the
Chevalley group than the adjoint group, but one then recovers the same finite
simple group as before if one quotients out by the centre. This construction
was then extended by Steinberg, Suzuki, and Ree by taking a Chevalley
group over a finite field and then restricting to the fixed points of a certain
automorphism of that group; after some additional minor modifications such
as passing to a bounded index subgroup or quotienting out a bounded centre,
this gives some additional finite simple groups of Lie type, including classical
examples such as the projective special unitary groups PSUn(Fq2), as well
as some more exotic examples such as the Suzuki groups or the Ree groups.

In this chapter we review the constructions of these groups and their
basic properties. The material here is standard, and was drawn from a
number of sources, but primarily from [Ca1993], [GoLySo1998], [FuHa],
[St1967].

12.1. Simple Lie groups over C

We begin with some discussion of Lie groups G over the complex numbers
C. We will restrict attention to the connected Lie groups, since more general
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Lie groups can be factored

0→ G◦ → G→ G/G◦ → 0

into an extension of an (essentially arbitrary) discrete group G/G◦ by the
connected component G◦ (or, in the ATLAS notation of the previous chap-
ter, G = G◦.(G/G◦)). One can interpret G◦ as the minimal open subgroup
of G, thus a Lie group is connected if and only if there are no proper open
subgroups.

To each Lie group G over C one can associate a complex Lie algebra g,
which one can identify with the tangent space of G at the identity. This iden-
tification is however not injective; one can have non-isomorphic Lie groups
with the same Lie algebra. For instance, the special linear group SL2(C)
and the projective special linear group PSL2(C) = SL2(C)/{+1,−1} have
the same Lie algebra sl2(C); intuitively, the Lie algebra captures all the
“local” information of the Lie group but not the “global” or “topological”
information. (This statement can be made more precise using the Baker-
Campbell-Hausdorff formula, discussed in [Ta2013, §1.2].) On the other

hand, every connected Lie group G has a universal cover G̃ with the same
Lie algebra (up to isomorphism) as G, which is a simply connected Lie group
which projects onto G by a short exact sequence

0→ π1(G)→ G̃→ G→ 0

with π1(G) being (an isomorphic copy of) the (topological) fundamental
group of G. Furthermore, two Lie groups have the same Lie algebra (up to
isomorphism) if and only if their universal covers agree (up to isomorphism);
this is essentially Lie’s second theorem, discussed in [Ta2013, §1.2] (in the
context of Lie groups and Lie algebras over the reals rather than the complex
numbers, but the result holds over both fields). Conversely, every Lie algebra
is the Lie algebra of some Lie group, and thus of some simply connected Lie
group; this is essentially Lie’s third theorem, also discussed at [Ta2013,
§1.2]. Thus, the Lie groups associated to a given Lie algebra g can all be

viewed as quotients of a universal cover G̃ by a discrete normal subgroup Γ.

We can say a little more about the fundamental group π1(G). Observe

that G̃ acts by conjugation on π1(G); however, π1(G) is discrete, and so

the automorphism group of π1(G) is discrete also. Since G̃ is connected, we

conclude that the action of G̃ on π1(G) is trivial; in other words, π1(G) is a

central subgroup of G (and so G̃ is a central extension of G). In particular,
the fundamental group π1(G) of a connected Lie group G is always abelian1.

Not every subgroup of a Lie group is again a Lie group; for instance,
the rational numbers Q are a subgroup of the one-dimensional complex Lie

1Of course, fundamental groups can be non-abelian for more general topological spaces; the
key property of Lie groups that are being used here is that they are H-spaces.
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group C but are clearly not a Lie group. However, a basic theorem of Cartan
(proven in [Ta2013, §1.3]) says that any subgroup of a real Lie group which
is topologically closed, is also a real Lie group. This theorem doesn’t directly
apply in the complex case (for instance R is a subgroup of the complex Lie
group C but is only a real Lie group rather than a complex one), but it does
say that a closed subgroup of a complex Lie group is a real Lie group, and
if in addition one knows that the real tangent space of the subgroup at the
origin is closed under complex multiplication then it becomes a complex Lie
group again.

We expect properties about the Lie algebra g to translate to analogous
properties about the Lie group G. In the case of simple Lie algebras, we
have the following:

Lemma 12.1.1. Let G be a connected complex Lie group with Lie algebra
g. Then the following are equivalent:

(i) g is a simple Lie algebra.

(ii) G is non-abelian, and the only closed normal subgroups of G are
discrete or all of G.

(iii) G is non-abelian, and the only normal subgroups of G are discrete
or all of G.

Proof. Suppose first that g is simple (which implies that g, and hence G, is
non-abelian), but G has a closed normal subgroup H which is not discrete
or all of G, then by Cartan’s theorem it is a real Lie group with positive
dimension. Then the Lie algebra h of H is a non-trivial real Lie algebra
which is preserved by the adjoint action of g. If h = g then H contains a
neighbourhood of the identity in G and is thus all of G as G is connected,
so h is a proper subalgebra of g. Note that [h, g] is a complex Lie algebra
ideal of g, so by simplicity this ideal is trivial, thus h lies in the centre of g,
which is again trivial by simplicity, a contradiction.

If H is normal but not closed, one can adapt the above argument as
follows. If H is central then it is discrete (because g is centreless) so assume
that H is not central, then it contains a non-trivial conjugacy class; after
translation this means that H contains a curve through the identity whose
derivative at the identity is a non-zero vector v in g. As g is simple, g is
the minimal ideal generated by v, which implies that the orbit of v under
the adjoint action of G spans g as a linear space, thus there are a finite
number of G-conjugates of v that form a basis for g. Lifting back up to
G and using the inverse function theorem, we conclude that H contains an
open neighbourhood of the identity and is thus all of G.

Now suppose that g is not simple. If it has a non-trivial abelian ideal,
then one can exponentiate this ideal and take closures to obtain a closed
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normal abelian subgroup of G, which is not all of G as G is non-abelian,
and which is complex because the ideal is a complex vector space. So we may
assume that no such ideal exists, which means from Theorem 11.0.1 that g
is semisimple and thus the direct sum g1 ⊕ . . . ⊕ gk of simple algebras for
some k ≥ 2. If we then take H to be the subgroup of G whose adjoint action
on g is the identity on g1, then H is a closed subgroup of G, thus a real Lie
group, and also a complex Lie group as the tangent space is g2 ⊕ . . . ⊕ gk,
giving a closed normal subgroup of intermediate dimension. �

In view of this lemma, we call a connected complex Lie group simple if
it is non-abelian and the only closed normal subgroups of G are discrete or
all of G. This differs slightly from the group-theoretic notion of simplicity,
which asserts instead that the only normal subgroups of G (including the
non-closed normal subgroups) are trivial or all of G. However, these two
notions are actually not that far apart from each other. Firstly, given a
simple Lie algebra g, one can form the adjoint form Gad of the associated
Lie group, defined as the closed subgroup of the general linear group GL(g)
on g generated by the transformations Adx := exp(adx) for x ∈ g. This is
group is clearly connected. Because all such transformations are derivations
on g, and derivations on a simple Lie algebra are inner (see Lemma 11.3.7),
we see that the tangent space of this group is ad g, which is isomorphic to
g as g is simple (and thus centreless). In particular, Gad is a complex Lie
group whose Lie algebra is g. Furthermore, any other connected complex
Lie group G with Lie algebra g will map by a continuous homomorphism to
Gad by the conjugation action of G on g; this map is open near the origin,
and so this homomorphism is surjective. Thus, G is a discrete cover of Gad,
much as G̃ is a discrete cover of G, and so all the Lie groups G with Lie
algebra g are sandwiched between the universal cover G̃ and the adjoint form
Gad. The same argument shows that Gad itself has no non-trivial discrete
normal subgroups, as one could then have non-trivial quotients of Gad which
still somehow cover Gad by an inverse of the quotient map, which is absurd.
Thus the adjoint form Gad of the Lie group is simple in the group-theoretic
sense, but none of the other forms are (since they can be quotiented down
to Gad). In particular, Gad is centreless, so given any of the other covers
G of Gad, the kernel of the projection of G to Gad is precisely Z(G), thus
Gad ≡ G/Z(G) for any of the Lie group forms G.

Note that for any form G of the Lie group associated to the simple Lie
algebra g, the commutator group [G,G] contains a neighbourhood of the
origin (as g is perfect) and so is all of G. Thus we see that while any given
form G of the Lie group is not necessarily simple in the group-theoretic
sense, it is quasisimple, that is to say it is a perfect central extension of a
simple group.
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It is now of interest to understand the fundamental group π(Gad) of the

adjoint form Gad, as this measures the gap between G̃ and Gad and will
classify all the intermediate forms G of the Lie group associated to g (as

these all arise from quotienting G̃ by some subgroup of π(Gad)). For this
we have the following very useful tool:

Lemma 12.1.2 (Existence of compact form). Let g be a simple complex
Lie algebra, and let Gad ⊂ GL(g) be its adjoint form. Then there exists
a compact subgroup Gc of Gad with Lie algebra igR, where gR is a real
Lie algebra that complexifies to g, thus g = gR ⊕ igR. Furthermore, every
element A in Gad has a unique polar decomposition A = DU , where U ∈ Gc
and D ∈ exp(gR).

Proof. Before we begin the proof, we give a (morally correct) example of
the lemma: take g = sln(C), and replace Gad by SLn(C) (this is not the
adjoint form of g, but never mind this). Then the obvious choice of compact
form is the special unitary group Gc = SUn(C), which has as Lie algebra
the real algebra isun(C) of skew-adjoint transformations of trace zero. This
suggests that we need a notion of “adjoint” ∗ : g → g for more general Lie
algebras g in order to extract the skew-adjoint ones.

We now perform this construction. As discussed in Section 11.8, g has
a Cartan-Weyl basis consisting of vectors Eα for roots α ∈ Φ as well as co-
roots Hα for simple roots α (with the Hβ for other roots β then expressed
as linear combinations of the simple co-roots Hα, and where we have fixed
some direction h in which to define the notions of positive and simple roots),
obeying the relations

[Hα, Hβ] = 0

[Hα, Eβ] = Aα,βEβ

[Eα, E−α] = Hα

[Eα, Eβ] = Nα,βEα+β

when α 6= −β and some integers Aα,β, Nα,β, with the convention that Eα
vanishes when α is not a root. We can also arrange matters so that Nα,β =
N−α,−β; see Lemma 11.8.5. If we then define the adjoint map ∗ : g → g to
be the antilinear map that preserves all the co-roots Hα, but maps Eα to
E−α for all α, one easily verifies that ∗ is an anti-homomorphism, so that
[X∗, Y ∗] = −[X,Y ]∗ for all X,Y ∈ g. Furthermore, one can now make g into
a complex Hilbert space with the Hermitian form 〈X,Y 〉 := K(X,Y ∗) (with
K being the Killing form), which one can verify using the Cartan-Weyl basis
to be positive definite (indeed the Cartan-Weyl basis becomes an orthogonal
basis with this Hermitian form). For any X ∈ g, one can also verify that
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the maps adX : g → g and adX∗ : g → g are adjoints with respect to this
Hermitian form.

If we now set gR := {X ∈ g : X∗ = X} to be the self-adjoint elements
of g, and Gc to be those elements of Gad that are unitary with respect to
the Hermitian form, we see that gR complexifies to g and Gc is a compact
group with real Lie algebra igR. Also, since adX is the adjoint of adX∗,
we see that Gad is closed under the operation of taking adjoints.

Now we obtain the polar decomposition. If A ∈ Gad, then AA∗ is a
self-adjoint positive definite map on the Hilbert space g, which also lies
in Gad and thus respects the Lie bracket: AA∗[X,Y ] = [AA∗X,AA∗Y ].
By diagonalising AA∗ and working with the structure constants of the Lie
bracket in the eigenbasis of AA∗ we conclude that all powers (AA∗)t for
t > 0 also respect the Lie bracket; sending t→ 0 we conclude that logAA∗

is a derivation of g, and thus inner, which implies that (AA∗)t ∈ Gad for

all t > 0. In particular the square root D := (AA∗)1/2 lies in Gad. Setting
U := D−1A we obtain the required polar decomposition; the uniqueness can
be obtained by observing that DU = A implies D = (AA∗)1/2. �

From the polar decomposition we see that Gad can be contracted onto
Gc (by deforming DU as DtU as t goes from 1 to 0). In particular, Gc is
connected and has the same fundamental group as Gad. On the other hand,
the Hermitian form 〈, 〉 restricts to a real positive definite form on the tangent
space ofGc that is invariant with respect to the conjugation action ofGc, and
thus defines a Riemannian metric onGc. The definiteness of the Killing form
then impolies (after some computation) that this metric has strictly positive
sectional curvature (and hence also strictly positive Ricci curvature), and
so any cover of Gc also has a metric with Ricci and sectional curvatures
uniformly bounded from below. Applying Myers’ theorem (discussed in
[Ta2009b, §2.10]), we conclude that any cover of Gc is necessarily compact
also; this implies that the fundamental group of Gc, and hence of Gad, is
finite. Thus there are only finitely many different forms of G between Gad

and G̃, with the latter being a finite cover of the former. For instance, in the
case of g = sln(C) (i.e. the type An−1 case), one can show that the adjoint

form Gad is isomorphic to PSLn(C) = PGLn(C) and the universal cover G̃
is isomorphic to SLn(C), so that

π(Gad) ≡ Z(G̃) ≡ Z/nZ

(since the central elements of SLn(C) come from the nth roots of unity), and
all the intermediate forms of G then come from quotienting out SLn(C) by
some subgroup of the nth roots of unity. Actually, as it turns out, for all Lie
algebras other than the An family, the fundamental group π(Gad) ≡ Z(G̃) is
very small, having order at most 4; see below. For instance, in the orthogonal
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algebras son(C) (coming from the Br and Dr families) the adjoint form is
SOn(C) and the universal cover is the spin group Spinn(C), which is a
double cover of SOn(C); in particular, there are no other models of the Lie
groups associated to the Br and Dr diagrams. This is in marked contrast
with the case of abelian Lie groups, in which there is an infinity of Lie
groups associated to a given abelian Lie algebra. For instance, with the
one-dimensional Lie algebra C, every lattice Γ in C gives a different Lie
group C/Γ with the specified Lie algebra.

The compact form of the adjoint form Gad of course lifts to compact
forms for all other Lie groups with the given Lie algebra. Among other
things, it demonstrates (by the Weyl unitary trick) the representation ver-
sion of Weyl’s complete reducibility theorem: every finite-dimensional rep-
resentation ρ : g → gl(V ) of g splits as the direct sum of a finite number
of irreducible representations. Indeed, one can lift this representation to a
representation ρ : G̃→ GL(V ) of the universal cover G̃, which then restricts

to a representation of the compact form G̃c of G̃. But then by averaging
some Hermitian form on V with respect to the Haar measure on G̃c one
can then construct a Hermitian form with respect to which G̃c acts in a
unitary fashion, at which point it is easy to take orthogonal complements
and decompose V into G̃c-irreducible components, which on returning to the
infinitesimal action establishes a decomposition into complex vector spaces
that are irreducible with respect to the action of igR and hence (on complex-
ifying) g. A similar theorem applies for actions of simple (or semisimple)
Lie groups, showing that such groups are reductive.

Another application of the unitary trick reveals that every simple com-
plex Lie group G is linear, that is to say it is isomorphic to a Lie subgroup
of GLn(C) for some n (this is in contrast to real Lie groups, which can
be non-linear even when simple; the canonical example here is the meta-
plectic group Mpn(R) that forms the double cover of the symplectic group
Spn(R) for any n ≥ 2). Indeed, letting G′c be the compact form of G′c, the
Peter-Weyl theorem (as discussed in [Ta2013, §1.4]) we see that G′c can be
identified with a unitary Lie group (i.e. a real Lie subgroup of Un(C) for
some n); in particular, its real Lie algebra can be identified with a Lie alge-
bra igR of skew-Hermitian matrices. Note that g can be identified with the
complexification gR ⊕ igR. The set {g exp(x) : g ∈ G′c, x ∈ gR} can then be
seen to be a connected smooth manifold which locally is a Lie group with Lie
algebra g, and by a continuity argument contains the group generated by a
sufficiently small neighbourhood of the identity, and is therefore a Lie group
with the same compact form as G, and thus descends from quotienting the
universal cover G̃ by the same central subgroup, and so is isomorphic to
G. This argument also shows that the compact form of a connected simple
complex Lie group is always connected, and that every complex form of a
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Lie group is associated to some linear representation of the underlying Lie
algebra g. (For instance, the universal form is associated to the sum of the
representations having the fundamental weights (the dual basis to the simple
coroots) as highest weights, although we will not show this here.)

If one intersects a Cartan subalgebra h with igR and then exponentiates
and takes closures, one obtains a compact abelian connected subgroup of
Gc whose Lie algebra is again h ∩ igR (from the self-normalising property
of Cartan algebras); these groups are known as (real) maximal tori. As
all Cartan subalgebras are conjugate to each other, all maximal tori are
conjugate to each other also. On a compact Lie group, the exponential map
is surjective (as discussed in [Ta2013, §2.11]); as every element in g lies in
a Cartan algebra, we obtain the useful fact that every element of Gc lies
in a maximal torus. The same statement lifts to other models G of the Lie
group, and among other things implies that the centre Z(G) of such a model
is equal to the intersection of all the maximal tori in that model.

We can push the above analysis a bit further to give a more explicit de-
scription of the fundamental group of Gad in terms of the root structure. We
will be a bit sketchy in our presentation; details may be found for instance
in [Se2007]. We first need a basic lemma. Let Gc be the compact form of
a simple Lie group, and let T be a maximal torus in Gc. Let N(T ) be the
normaliser of T in Gc; as Cartan algebras are self-normalising, we see that
N(T ) has the same Lie algebra as T , and so N(T )/T is a finite group, which
acts on the Lie algebra t of T by conjugation, and similarly acts on the dual
t∗. It is easy to see that this action preserves the roots of t∗. Note that the
Weyl group W of the root system, defined in the previous set of notes, also
acts (faithfully) on t∗. It turns out that the two groups coincide:

Lemma 12.1.3 (Equivalence of Weyl groups). We have N(T )/T ≡ W ,
with the actions on t∗ (or equivalently, t) being compatible.

Proof. It will suffice to show that

(a) the action of N(T )/T on t∗ is faithful;

(b) to every element of W one can find an element of N(T )/T that
acts the same way on t∗; and

(c) for every element of N(T )/T there is an element of W that acts
the same way on t∗.

To prove (a), we establish the stronger statement that any element w of
N(T ) that preserves a given Weyl chamber Ch of t∗ (for some regular h ∈ t)
is necessarily in T . If w preserves the h-Weyl chamber Ch, then it permutes
the h-simple roots, and thus fixes the sum ρ = ρh of these h-simple roots.
Thus, the one-parameter group {exp(tρ) : t ∈ R} lies in the connected
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component Z(w)0 of the centraliser Z(w) := {g ∈ Gc : gw = wg} of w. Of
course, w also lies in Z(w)0, as does any maximal torus of Gc that contains
w. In particular, any maximal torus of Gc containing w is also a maximal
torus in Z(w)0; since all maximal tori in Z(w)0 are conjugate, we conclude
that all maximal tori in Z(w)0 are also maximal tori in Gc; they also all
contain w since w is central in Z(w)0. In particular, {exp(tρ) : t ∈ R}
lies in a maximal torus T ′ of Z(w)0 (and hence in Gc) that contains w. In
particular, the adjoint action of ρ fixes the Lie algebra t′ of T ′. But ρ is
regular in t, so its centraliser in igR is t. Thus T = T ′; since w ∈ T ′, we
have w ∈ T as required.

The proof of (c) is similar. Here, w need not preserve ρ, but one can
select an element w′ of W to maximise 〈w′(h), w(ρ)〉; arguing as in the proof
of Lemma 11.7.12, we see that (w′)−1w maps the h-Weyl chamber to itself,
and the claim follows from the previous discussion.

To prove (b), it suffices to show that every reflection sα comes from
an element of N(T )/T . But in the rank one case (when G is isomorphic
SU2(C)) this can be done by direct computation, and the general rank case
can then be obtained by looking at the embedded copy of the rank one Lie
group associated to the pair of roots {−α, α}. �

Call an element of igR regular if it is conjugate (under the adjoint action
of Gc) to a regular element of t (and hence, by the Weyl group action, to
an element in the interior c of the (adjoint of the) Weyl chamber); this
conjugation element can be viewed as an element of G/T , which is unique by
the discussion in the previous section. This gives a bijection Gc/T×c→ igreg

R

to the regular elements of igR, which can be seen to be a homeomorphism.
The non-regular elements can be computed to have codimension at least
three in igR (because the centraliser of non-regular elements have at least
two more dimensions than in the regular case), so igreg

R is simply connected;
as this space retracts ontoGc/T , we conclude thatGc/T is simply connected.

From this we may now compute the fundamental group of Gc (or equiv-
alently, of Gad). By inspecting the adjoint action of T on g, we see that
for t ∈ hR, exp(t) is trivial in T if and only if t lies in the coweight lattice
P := {t ∈ h : 〈t, α〉 ∈ Z}, so the torus T may be identified with the quo-
tient hR/P . Inside P we have the coroot lattice Q generated by the coroots
{hα : α ∈ Φ}; these are both full rank in hR and so the quotient P/Q is
finite.

Example 12.1.4. In the An−1 example, hR is the space Rn
0 of vectors

(x1, . . . , xn) ∈ Rn with x1 + . . . + xn = 0; the coweight lattice P is then
generated by ei− 1

n

∑n
j=1 for i = 1, . . . , n, and the root lattice Q is spanned

by ei − ej for 1 ≤ i < j ≤ n and has index n in P .
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Call an element x of h non-integral if one has 〈x, α〉 6∈ Z for all α ∈ Φ; this
is a stronger condition than being regular, which corresponds to 〈x, α〉 being
non-zero for all α. The set of non-integral elements of h is a collection of
open polytopes, and is acted upon by the group AQ of affine transformations
generated by the Weyl group and translations by elements of the coroot
lattice Q. A fundamental domain of this space is the Weyl alcove A, in
which 〈x, α〉 > 0 for positive roots and 〈x, β〉 < 1 for the maximal root
β; this is a simplex in the Weyl chamber consisting entirely of non-integral
elements, such that the reflection along any of the faces of the alcove lies in
A, which shows that it is indeed a fundamental domain. (In the An−1 case,
the alcove consists of tuples θ1, . . . , θn with θ1 > . . . > θn > θ1 − 1.)

Call an element of Gc regular if it is conjugate to exp(x) for some non-
integral x ∈ h; as before, the regular elements have codimension at least
three in Gc, and so the fundamental group of Gc is the same as the funda-
mental group of the non-integral elements of Gc. (In the case of An−1, Gc
is the projective special unitary group PSUn(C), and the equivalence class
of an unitary matrix is regular if its eigenvalues are all distinct.) Observe
that exp(ax) and exp(x) are conjugate whenever a ∈ AQ; in fact the same
is true for all a in AP , the group of affine transformations on h generated
by the Weyl group and translations by elements of the coweight lattice P .
Because of this, we see that every element of Gc can be expressed in the
form exp(x)a where x lies in the Weyl alcove A, g lies in G/T , and exp(x)g

is the conjugate of exp(x) by (any representative of) g. By lifting, we can
then write any loop γ : [0, 1]→ Gc in Gc in the form

γ(t) = exp(x(t))g(t)

for some continuous x : [0, 1] → A and g : [0, 1] → G/T . If we fix the base
point γ(0) = γ(1) = p0 of γ, then we can fix the initial point x(0) = x0 of
x, and normalise g(0) to be the identity; we then have

exp(x(1))g(1) = exp(x0),

which places g(1) in N(T )/T (since exp(x0) and exp(x1), being non-integral,
do not lie in any maximal torus other than T , as can be seen by inspecting
its adjoint action on g). Thus there is an element w of W and k ∈ P such
that x(1) = wx0 + k and g(1) = w−1; this assigns an element a of AP
to γ with the property that ax0 ∈ A; one can check that this assignment
is preserved under homotopy of γ. From the simply connected nature of
both G/T and A one can check that this assignment is injective; and by the
connected nature of G/T and A the assignment is surjective. On the other
hand, as A is a fundamental domain for AQ, we see that each (right) coset
of AP in AQ has exactly one representative a for which ax0 ∈ A, so we have
obtained a bijective correspondence between π1(Gc) and AQ/AP ≡ Q/P .
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In fact it is not difficult to show that this bijection is a group isomorphism,
thus

(12.1) Z(G̃) ≡ π1(Gad) ≡ π1(Gc) ≡ Q/P.
With this formula one can now compute the fundamental group or centre
(12.1) associated to any Dynkin diagram group quite easily, and it usually
ends up being very small:

(i) For G2, F4, or E8, the group (12.1) is trivial.

(ii) For Bn, Cn, or E7, the group (12.1) has order two.

(iii) For E6, the group (12.1) has order three.

(iv) For Dn, the group (12.1) has order four, and is cyclic for odd n and
the Klein group for even n.

(v) As mentioned previously, for An, the group (12.1) is cyclic of order
n+ 1.

Remark 12.1.5. The above theory for simple Lie algebras extends without
difficulty to the semisimple case, with a connected Lie group defined to be
semisimple if its Lie algebra is semisimple. If one restricts to the simply
connected models G̃, then every simply connected semisimple Lie group is
expressible as the direct sum of simply connected simple Lie groups. A
general semisimple Lie groups might not be a direct product of simple Lie
groups, but will always be a central product (a direct product quotiented
out by some subgroup of the centre).

Remark 12.1.6. The compact form Gc (and its lifts) are usually not the
only real Lie groups associated to g, as there may be other real forms of
g than igR. These can be classified by a somewhat messier version of the
arguments given previously, but we will not pursue this matter here; see, e.g.,
[Kn2002]. We also caution that there are additional complications in the
real case due to discrepancies between the algebraic and analytic topologies
on real algebraic groups; in particular, an algebraic group over R may be
connected in the algebraic (Zariski) sense while being disconnected in the
analytic sense. In contrast, the algebraic and analytic topologies are closely
related to each other in the complex case, as is most famously exemplified
by Serre’s GAGA paper [Se1956].

12.2. Chevalley groups

The theory of connected Lie groups works well in the real numbers R or
complex numbers C, as these fields are themselves connected in the analytic
sense, although as mentioned in the previous remark, in the real case one
needs to take some care to relate the analytic structure to the algebraic
structure. However, the theory of Lie groups becomes more problematic
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when one works with disconnected fields, such as finite fields or the p-adics.
However, there is a good substitute for the notion of a Lie group in these
settings (particularly when working with algebraically complete fields k),
namely the notion of an algebraic group. Actually, in analogy to how complex
Lie groups are automatically linear groups (up to isomorphism), we will
be able to restrict attention to (classical) linear algebraic groups, that is
to say Zariski-closed subgroups of a general linear group GLn(k) over an
algebraically closed field k. (Remarkably, it turns out that all affine algebraic
groups are isomorphic to a linear algebraic group, though we will not prove
this fact here.)

The following result allows one to easily generate linear algebraic groups:

Theorem 12.2.1. Let k be algebraically closed. All topological notions are
with respect to the Zariski topology, and notions of constructibility and ir-
reducibility are in the algebraic geometry sense. If V is a connected con-
structible subset of GLn(k) containing the identity, then the group 〈V 〉 gen-
erated by V is closed (and is thus a linear algebraic group) and also irre-
ducible.

In particular, this theorem implies that linear algebraic groups are con-
nected if and only if they are irreducible.

Proof. By combining V with its reflection V −1 we may assume that V is
symmetric: V = V −1. The product sets V, V 2, V 3, . . . are all constructible
and increasing, so at some point the dimension must stabilise, thus we can
find k such that V k and V 2k both have dimension d. Let A1, . . . , Am be
the d-dimensional irreducible components of V k, and A′1, . . . , A

′
m′ be the d-

dimensional irreducible components of V 2k, thus every element of V k lies in
one of the sets Bi′ := {g ∈ GLn(k) : gA1 = A′i′} for some i′ = 1, . . . , k′. As

these sets are closed and disjoint and V k is connected, only one of the Bi′ , say
B1, is non-empty; as V k contains the identity, we conclude that A1 = A′1 and

V k ⊂ B1 ⊂ A′1, thus V k is an open dense subset of A1, which is symmetric,
contains the identity, is Zariski closed, and closed under multiplication and
is thus an algebraic group. This implies that V 2k is all of A1 (because V k

and (V k)−1g intersect for all g ∈ A1 as they are both open dense subsets of
A1) and the claim follows. �

This already gives a basic link between the category of complex Lie
groups and the category of algebraic groups:

Corollary 12.2.2. Every complex simple Lie group Gad in adjoint form is
an linear algebraic group over C.

The same statement is in fact true (up to isomorphism) for the other
forms of a complex simple Lie group (by essentially the same argument,
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and using the fact that the Jordan decomposition for a simple Lie algebra
is universal across all representations), though we will focus here on the
adjoint form for simplicity. Note though that not every real simple Lie
group is algebraic; for instance, the universal cover of SL2(R) has an infinite
discrete centre (the fundamental group of SL2(R) is isomorphic to Z) and
is therefore non-algebraic. To emphasise the algebraicity of the complex
simple Lie group Gad (and in order to distinguish it from the more general
Chevalley groups Gad(k) which we will introduce shortly) we will now write
it as Gad(C).

Proof. Recall from Section 11.8 that the complex Lie algebra g has a
Cartan-Weyl basis - a complex-linear basis (Eα)α∈Φ, (Hα)α∈Π indexed by
the roots Φ and the simple roots Π respectively, obeying the Cartan-Weyl
relations

[Hα, Eβ] = Aα,β

[Eα, E−α] = Hα

[Eα, Eβ] = Nα,βEα+β

[Hα, Hβ] = 0

where we extend Hα to all roots α ∈ Φ by making Hα linear in the coroot
of α, Aα,β are integers, and Nα,β are structure constants. Among other
things, this shows that Gad(C) is generated by the one-parameter unipotent
subgroups Uα(C) := {exp(t adEα) : t ∈ C} and toral subgroups Tα(C) :=
{exp(t adHα) : t ∈ C} for various α. The unipotent groups Uα are algebraic
because adEα is nilpotent. The toral groups Tα are not quite algebraic
(they aren’t closed), but they are constructible, because the Cartan-Weyl
relations show that exp(t adHα) is given by a diagonal matrix whose entries
are monomials in exp(t), so by reparameterising in terms of z := exp(t) ∈ C×

we obtain the desired constructibility. The claim then follows from Theorem
12.2.1. �

Somewhat miraculously, the same construction works for any other al-
gebraically closed fields k (and even to non-algebraically closed fields, as
discussed below), to construct an algebraic group2 Gad,k over k that is the
analogue of the adjoint form of the complex Lie group Gad(C). Whereas
Gad(C) consisted of linear transformations from the complex vector space
g to itself, Gad,k consists of linear transformations on the k-vector space
g(k), which has the same Cartan-Weyl basis (Eα)α∈Φ, (Hα)α∈Π but now
viewed as a basis over k rather than C. The analogue Tα,k of the toral

2We use Gad,k here instead of Gad(k), to avoid giving the impression that Gad(k) is the set

of k-points of an algebraic group Gad, as this is not necessarily the case when k is not algebraically
closed.
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subgroups Tα(C) = {exp(t adHα) : t ∈ C} are then the group of linear
transformations hα(z) on g(k) that map Eβ to zAα,βEβ for all roots β and
annihilate all the Hγ , for some z ∈ k×; this is a connected constructible sub-
group of GL(g(k)). As for the k-analogue Uα,k of the unipotent subgroups
Uα(C) = {exp(t adEα) : t ∈ C}, we use crucially the fact (established in
Lemma 11.8.5) that one can ensure that Nα,β = ±(r + 1), where r is the
largest integer such that β−rα is a root. This implies in the complex setting
that

exp(t adEα)Eβ = Eβ ± t(r + 1)Eβ+α ± t2
(r + 1)(r + 2)

2
Eβ+2α ± . . .

where the series terminates once β + sα stops being a root. The point here

is that the coefficients ±(r + 1),± (r+1)(r+2)
2 , etc. are all integers, and so

one can take this as a definition for uα(t) = exp(t adEα) for g(k) and any
t ∈ k regardless of what characteristic k is, and one still obtains a connected
unipotent group in this way. If we then let Gad,k be the group generated by
these one-parameter subgroups Tα,k, Uα,k, we see that this is a connected
linear algebraic group defined over k, known as the (adjoint) Chevalley group
over k associated to the given root system (or Dynkin diagram). (Other non-
adjoint versions of the Chevalley group will be briefly discussed in Remark
12.2.9.)

The same construction works over fields k that are not algebraically
closed, giving groupsGad,k that are also denotedD(k) whereD is the Dynkin
diagram associated to k; for instance An(k) is the projective special linear
group PSLn+1(k); forthe purposes of this post, we shall also refer to these
groups Gad,k as Chevalley groups. However, we caution that Gad,k is not

necessarily the k-points3 of an algebraic group, and in this section we shall
treat it purely as an abstract group instead. Despite this issue, these groups
still retain a great deal of the other structure of the complex Lie group
Gad(C), and in particular inherit the Bruhat decomposition which we now
pause to recall. We first identify some key subgroups ofGad,k. We first locate
the maximal torus Tk, defined as the group generated by the one-parameter
toral subgroups Tα,k for α ∈ Π; this is an abelian subgroup of Gad,k. Next,
we locate the Borel subgroup Bk, defined as the group generated by T and
the unipotent groups Uα,k for positive roots α; this can be seen to be a
solvable subgroup of Gad,k. Then, for each reflection sα ∈ W in the Weyl
group W associated to a simple root α ∈ Π, we define the elements

nα(t) := uα(t)u−α(−t−1)uα(t)

for t ∈ k×, one can check using the Cartan-Weyl relations that nα(t) deter-
mines an element in a coset of T in its normaliser N(T ) which is independent

3For instance, the adjoint form algebraic group associated to An is PGLn+1, and the set of

k-points of this group is PGLn+1(k), which can be a larger group than PSLn+1(k).
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of the choice of t. Letting Nk be the group generated by the nα(t) and Tk,
we thus see that Nk normalises Tk, and with some further application of
the Cartan-Weyl relations one sees that Nk/Tk is isomorphic to W (with
each nα(t) projecting down to sα); cf. Lemma 12.1.3. Indeed, if nw ∈ Nk

is a representative of w ∈ W , one sees that the operation of conjugation
g 7→ nwgn

−1
w maps Uα,k to Uw(α),k for any root α.

For notational reasons we now fix an assignment nw of a representative
in Nk to each element w ∈ W , although all of the objects we will actually
study will not be dependent on this choice of assignment.

The following axioms can then be verified from further use of the Cartan-
Weyl relations:

(i) Gad,k is generated by Bk and Nk.

(ii) Tk is the intersection of Bk and Nk, and is normalised by Nk.

(iii) W = Nk/Tk is generated by the reflections sα, α ∈ Π, which are of
order two.

(iv) No reflection sα (or more precisely, no representative in Nk of that
reflection) normalises Bk.

For each element w ∈ W of the Weyl group, we can form the double
coset C(w) := BknwBk; this is easily seen to be independent of the choice
of representative nw. Thus for instance C(1) = Bk. It is also clear that any
two double cosets C(w), C(w′) are either equal or disjoint, and one has the
inclusion

(12.2) C(ww′) ⊂ C(w)C(w′).

for any w,w′ ∈ W , as well as the symmetry C(w)−1 = C(w−1). We also
have the important further inclusion relation:

Lemma 12.2.3. For any α ∈ Π and w ∈W , we have C(w)C(sα) ⊂ C(w)∪
C(wsα).

Proof. First suppose that w(α) is a positive root. Then we observe the
factorisation

Bk = Uα,kTkUα,k

where Uα,k is the group generated by all the Uβ for positive β 6= α. From
the positivity of w(α) one has

nwUα,kn
−1
w = Uw(α),k ⊂ Bk

and from the simplicity of α one has

nsα(TkUα,k)n
−1
sα ⊂ Bk

and thus

Bk ⊂ (n−1
w Bknw)(nsαBkn

−1
sα );
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multiplying on the left by nw and on the right by sα we conclude that

C(w)C(sα) ⊂ C(wsα);

as the left-hand side is a non-empty union of double cosets, we in fact have
equality

C(w)C(sα) = C(wsα).

Now suppose instead that w(α) is a negative root. Applying the previous
equality with w replaed by wsα we conclude that

(12.3) C(wsα)C(sα) = C(w)

and thus

C(w)C(sα) = C(wsα)C(sα)C(sα).

On the other hand, direct calculation with the Cartan-Weyl relations reveals
that

C(sα)C(sα) ⊂ C(1) ∪ C(sα)

and the claim then follows from (12.3). �

Lemma 12.2.3 and the preceding four axioms form the axiom system,
introduced by Tits, for a (B,N)-pair . This axiom system is convenient for
abstractly achieving a number of useful facts, such as the Bruhat decomposi-
tion, and the simplicity of Gad,k (in most cases). We begin with the Bruhat
decomposition:

Proposition 12.2.4 (Bruhat decomposition). Gad,k is the disjoint union
of C(w) as w ranges over W . (Thus there is a canonical bijection between
BkGad,k/Bk and W = Nk/Tk, which by slight abuse of notation can be
written as Gad,k = BkWBk.)

Proof. We first show that the C(w) cover Gad,k. As the C(w) cover both
Bk and Nk (which together generate Gad,k) and their union is symmet-
ric, it suffices to show that

⋃
w C(w) is closed under multiplication, thus

C(w1)C(w2) ⊂
⋃
w C(w). But this is easily achieved by iterating Lemma

12.2.3 (inducting on the length of w2, that is to say the minimal number
of reflections sα needed to generate C(w2), noting that the case w2 = 1 is
trivial).

Now we show that the C(w) are disjoint. Since double cosets are either
equal or disjoint, it suffices to show that C(w1) = C(w2) implies w1 = w2

for all w1, w2 ∈W . We induct on the length of w2. The case when w2 = 1 is
trivial, so suppose that w2 6= 1 and that the claim has already been proven
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for all shorter w2. We write w2 = w′2sα for some shorter w′2. Then

w′2 = w2sα ⊂ C(w2)C(sα)

= C(w1)C(sα) ⊂ C(w1) ∪ C(w1sα)

= C(w2) ∪ C(w1sα)

and hence C(w′2) is either equal to C(w2) or C(w1sα). By induction we then
either have w′2 = w2 or w′2 = w1sα. The former is absurd, thus w′2 = w1sα
and thus w1 = w2 as required. �

By further exploitation of the (B,N)-pair axioms and some other prop-
erties of Gad,k, we can show that this group is simple in the group-theoretic
sense in almost all cases (there are a few exceptions in very low character-
istic). This generalises the discussion of complex Lie groups in the previous
section, except now we do not need to pass through the simplicity of the
associated Lie algebra (and instead work with the irreducibility of the root
system).

We use an argument of Iwasawa and Tits. We first need some structural
results about parabolic subgroups of Gad,k - subgroups that contain the Borel
subgroup B (or a conjugate thereof).

Lemma 12.2.5. Let w ∈ W be an element of the Weyl group, with a
minimal-length representation w = sα1 . . . sαl in terms of representations.
Then nsα1 , . . . , nsαl lie in the group generated by Bk and nwBkn

−1
w .

Proof. We may assume inductively that l > 0 and that the claim has been
proven for smaller values of l. From minimality we know that w−1(α1) is a
negative root, and so

U−α,k = nwU−w−1(α),kn
−1
w ⊂ nwBkn−1

w

and Uα,k ⊂ Bk, hence nα, being in the group generated by Uα,k and U−α,k,
is contained in the group generated by Bk and nwBkn

−1
w . Writing w =

sαw
′, this implies that this group contains the group generated by Bk and

nw′Bkn
−1
w′ , and the claim then follows from induction. �

Corollary 12.2.6 (Classification of parabolic groups). Every parabolic group
Bk ⊂ P ⊂ Gad,k containing Bk takes the form

⋃
w∈Wπ

C(w) for some π ⊂ Π,
where Wπ is the subgroup of W generated by the sα for α ∈ Π, and conversely
each of the

⋃
w∈Wπ

C(w) is a parabolic subgroup of Gad,k. Furthermore all

of these 2|Π| parabolic groups are distinct.

Proof. The fact that
⋃
w∈Wπ

C(w) is a group follows from Lemma 12.2.3.
To show distinctness, it suffices by the Bruhat decomposition to show that
the Wπ are all distinct, but this follows from the linear independence of the
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simple roots. Finally, if P is a parabolic subgroup containing Bk, we can
set π := {α ∈ Π : nα ∈ P}, then clearly P contains

⋃
w∈Wπ

C(w). On the
other hand, as P = BkPBk, P is the union of double cosets C(w), and from
Lemma 12.2.5 if P contains C(w), then w is generated by reflections from
π. The claim follows. �

This, together with the previously noted solvability of B and the irre-
ducibility of the root system, gives a useful criterion for simplicity:

Lemma 12.2.7 (Criterion for simplicity). Suppose that Gad,k is a perfect
group and that Bk does not contain any non-trivial normal subgroup of Gad,k

(i.e.
⋂
g∈Gad,k

gBkg
−1 = {1}). Then Gad,k is simple.

Proof. Let H be a non-trivial normal subgroup of Gad,k. Then by hypoth-
esis H is not contained in Bk, so the group HBk is a parabolic subgroup
of Gad,k that is strictly larger than Bk, thus HBk =

⋃
w∈Wπ

C(w) for some
non-empty π ⊂ Π. If α ∈ π and β ∈ Π\π, then H intersects C(sα), and
thus (by the normality of H) also intersects nsβC(sα)n−1

sβ
. By Lemma 12.2.3

(and (12.3)), we have

nsβC(sα)n−1
sβ
⊂ C(sβ)C(sα)C(sβ)

= C(sβ)C(sαsβ)

⊂ C(sβsαsβ) ∪ C(sαsβ)

and so at least one of sβsαsβ and sαsβ lies in Wπ. But as sα ∈ Wπ and
sβ 6∈ Wπ, we conclude that sβsαsβ ∈ Wπ. From this and Lemma 12.2.5 we
see that any minimal representation of sβsαsβ has generators both in {α, β}
and π, which forces sβsαsβ = sα (note that sβsαsβ cannot vanish). Thus we
see that sα commutes with sβ, contradicting the irreducibility of the root
system unless π = Π. We thus have HBk = Gad,k. As Gad,k is perfect, this
implies that Gad,k/H is also perfect; but this is a quotient of the solvable
group Bk and is thus solvable also. As only the trivial group is both perfect
and solvable, we conclude that H = Gad,k, and the claim follows. �

In the specific case of the adjoint group Gad,k, the second hypothesis in
Lemma 12.2.7 can be verified:

Lemma 12.2.8. Bk does not contain any non-trivial normal subgroup of
Gad,k.

As in the complex case, it turns out that non-adjoint versions of a Cheval-
ley group have non-trivial centre that lies in every maximal torus and hence
in every Borel group, so this lemma is specific to the adjoint group.

Proof. Let H be a normal subgroup of Gad,k that lies in Bk. Conjugating
by the long word in W (that maps all positive roots to negative roots) we see
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that H actually lies in the torus Tk. In particular, for any root α, [H,Uα,k]
lies in both H ⊂ Tk and Uα,k and is thus trivial; this shows that H is central.
But by the Cartan-Weyl relations we see that there are no elements of Tk
that commute with all the Uα,k, and the claim follows. �

We remark that the above arguments can also be adapted to show that
Gad,k always has trivial centre Z(Gad,k) (because the above lemma and the
proof of Lemma 12.2.7 then shows that Z(Gad,k)Bk = Gad,k, making Bk
normal in G(k), which can be shown to lead to a contradiction).

From the above discussion we see that Gad,k will be simple whenever
it is perfect. Establishing perfection is relatively easy in most cases, as
it only requires enough explicit examples of commutators to encompass a
generating subset of Gad,k. It is only when the field k and the Dynkin
diagram are extremely small that one has too few commutators to make a
generating subset, and Gad,k fails to be perfect (and thus also fails to be
simple); the specific failures turn out to be A1(F2), A1(F3), B2(F2), and
G2(F2). See [Ca1993] for details.

Remark 12.2.9. We have focused primarily on the adjoint group Gad,k of
the Chevalley groups, but much as in the complex Lie group case, to each
Dynkin diagram and field k one can associate a finite number of versions of
the Chevalley group, ranging from the minimal example of the adjoint form
Gad,k to the maximal example Gu,k. When k is algebraically closed, these
are all linear algebraic groups, and every form of the Chevalley group has an
isogeny (the algebraic group analogue of a finite cover) to the adjoint form
(arising from quotienting out by the centre) and receives an isogeny from the
universal form, much as in the complex case. We still have the basic identity
(12.1), but the lattices P,Q now lie over k rather than R or C (which can
make the order of Q/P smaller than in the complex case if k has small
positive characteristic p by quotienting out the elements of order a prime
power of p, thus collapsing the number of distinct forms of the Chevalley
group in some characteristics). See for instance [St1967] or [GoLySo1998]
for details. As an example of the collapse phenomenon mentioned earlier,
SL2(k) (the universal form for A1(k)) and PSL2(k) (the adjoint form for
A1(k)) are distinct for most fields k, but coincide when k has characteristic
two.

Remark 12.2.10. We caution that the way we have defined Chevalley
groups here, a Chevalley group Gk over a non-algebraically closed field is
not necessarily the same as the set of k-points of the Chevalley group Gk
of the algebraic closure k, as the latter may be strictly larger. For instance,
the real elements of PSL2(C) = PGL2(C) are the elements of PGL2(R),
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which a larger group than PSL2(R) (it also contains the projectivisation of
matrices with negative determinant).

Remark 12.2.11. The Chevalley construction gives some specific families
of algebraic groups over algebraically closed fields that are either simple (in
the adjoint form) or almost simple (which means that the only normal groups
are zero-dimensional); in the latter case they are also quasisimple as in the
complex case. It is natural to ask whether there are any other (non-abelian)
simple algebraic groups over an algebraically closed field. It turns out (quite
remarkably) that one can perform the entirety of the classification of complex
Lie algebras in the category of algebraic groups over a given algebraically
closed field (regardless of its characteristic!), to arrive at the conclusion that
the Chevalley groups are (up to isomorphism) the only non-abelian simple
or almost simple connected linear algebraic groups. This is despite the lack
of any reasonable analogue of the compact form Gc over arbitrary fields,
and also despite the additional subtleties present in the structural theory of
Lie algebras when the characteristic is positive and small. Instead, one has
to avoid use of Lie algebras or compact forms, and try to build the basic
ingredients of the (B,N)-pair structure mentioned above (e.g. maximal tori,
Borel subgroups, roots, etc.) directly. This result however requires a serious
amount of algebraic geometry machinery and will not be discussed here; see,
e.g., [Hu1975] for details.

Remark 12.2.12. The Bruhat decomposition gives a parameterisation of
Gad,k as

Gad,k =
⋃
w∈W

UkTknwU
−
w,k

where Uk is the group generated by the Uα,k for all positive roots α, and

U−w,k is the subgroup generated by the Uα for those positive roots α for which

w(α) is negative; every element g of Gad,k then has a unique representation
of the form

g = utnwu
′

for some w ∈ W , u ∈ Uk, t ∈ Tk, and u′ ∈ U−w,k. Among other things, this

allows for a computation of the order of the Chevalley group Gad,Fq over a
finite field of q elements:

|Gad,Fq | =
∑
w∈W

qN (q − 1)rqNw

where N is the number of positive roots, r is the rank (the dimension of
the maximal torus), and Nw is the number of positive roots α with w(α)
negative. If suggestively writes q = 1 + ε, this becomes

|Gad,F1+ε | = εr(|W |+O(ε))
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suggesting that in the limit ε → 0, the Chevalley group Gad,F1 over the
“field with one element” should degenerate to something like NF1 = TF1 .W ,
an extension of the Weyl group by some sort of torus over the field with
one element. Now, this calculation does not make actual rigorous sense -
the currently accepted definition of a field does not allow the possibility
of fields of order equal to one (or arbitrarily close to one) - but there are
tantalising hints in various areas of mathematics that these sorts of formal
computations can sometimes to tied to interesting rigorous mathematical
statements. However, it appears that we are still some ways off from a
completely satisfactory understanding of the extent to which the “field with
one element” actually exists, and what its nature is.

12.3. Finite simple groups of Lie type

As discussed above, the (adjoint) Chevalley group construction Gad,k, when
applied to a finite field Fq, usually gives a finite simple group G(q) := Gad,Fq .
However, this construction does not give all of the finite simple groups that
are associated to Lie groups. A basic example is the projective special unitary
group PSUn(Fq) over a finite field whose order q is a perfect square: q = q̃2.
This field supports a Frobenius automorphism τ : x 7→ xq̃ which behaves
much like complex conjugation z 7→ z does on the complex field (for instance,
τ fixes the index two subfield Fq̃, much as complex conjugation fixes the
index two subfield R). We can then define PSUn(Fq2) as the quotient of the
matrix group

(12.4) SUn(Fq) := {U ∈ SLn(Fq) : Uτ(UT ) = 1}

by its centre, where τ(UT ) is the matrix formed by applying the Frobenius
automorphism τ to each entry of the transpose UT of TU . This resembles
Chevalley groups such as PSLn(k), but the group PSUn(k) requires the
additional input of the Frobenius automorphism, which is available for some
fields k but not for others, and destroys the algebraic nature of the group.
For instance, PSUn(C) is not a complex algebraic group, because complex
conjugation z 7→ z is not a complex algebraic operation; it is similarly not a
complex Lie group because complex conjugation is not a complex analytic
operation. One can view this groups as algebraic (or analytic) over an index
two subgroup - for instance, PSUn(C) is a real Lie group, and can also be
(carefully) viewed as a real algebraic group, as long as one bears in mind
that the reals are not algebraically closed. While this can certainly be a
profitable way to view group of this type (known as Steinberg groups), there
is another perspective on such groups which extends to the most general class
of finite simple groups of Lie types, which contains not only the Chevalley
groups and the Steinberg groups but an additional third class, namely the
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Suzuki-Ree groups. To motivate this different viewpoint, observe that the
definition (12.4) of the special unitary group SUn(Fq) can be rewritten as

SUn(Fq) = {U ∈ SLn(Fq) : σ(U) = U}

where σ = ρ ◦ τ = τ ◦ ρ, τ is the Frobenius map defined earlier (acting
componentwise on each matrix entry), and τ is the transpose inverse map

(12.5) ρ(U) := (UT )−1.

Observe that τ and ρ are commuting automorphisms on SLn(Fq2) of order
two, and so σ is also an automorphism of order two (i.e. it is an involution).
Thus we see that the special unitary group is the subgroup of the Chevalley
group SLn(Fq2) which is fixed by the involution σ.

This suggests that we can locate other finite simple (or at least finite
quasisimple) groups of Lie type by looking at the fixed points

G(q)σ = {g ∈ G(q) : σ(g) = g}

of automorphisms σ in a Chevalley group G(q). One should look for auto-
morphisms with a fairly small order (such as two or three), as otherwise the
fixed point set might be so small as to generate a trivial group.

As the example of the special unitary group suggests, one can obtain
such automorphisms σ by composing two types ρ, τ of automorphisms. On
the one hand, we have the field automorphisms τ : x 7→ xq̃, where q̃ is some
power of the characteristic p of the field Fq, applied to each matrix entry of
Chevalley group elements. On the other hand, we have graph automorphisms
ρ : G(q)→ G(q), arising from automorphisms of the Dynkin diagram (which,
as noted in Theorem 11.8.1, induces an automorphism of Lie algebras, and
can also be used to induce an automorphism of Chevalley groups), which
commute with field automorphisms. The transpose inverse map ρ defined
in (12.5) is, strictly speaking, not of this form: it is associated to the Lie
algebra involution x 7→ −xT , which maps each root ei − ej to its negation
ej−ei, so in particular does not map simple roots to simple roots. However,
if one composes ρ with the conjugation action of the long word in the Weyl
group (an example of an inner automorphism), which in the case of SLn is
represented by an antidiagonal matrix, the associated Lie algebra involution
now maps each root ei−ej to its reflection en+1−j−en+1−i, and corresponds
to the Dynkin diagram automorphism of An formed by reflection. With this
conjugation by the long word, the fixed points of the resulting automorphism
σ is still a special unitary group SUn(Fq), but the sesquilinear form that
defines unitarity is not the familiar form

〈(x1, . . . , xn), (y1, . . . , yn)〉 := x1τ(y1) + . . .+ xnτ(yn)
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but rather an antidiagonal version

〈(x1, . . . , xn), (y1, . . . , yn)〉 := x1τ(yn) + . . .+ xnτ(y1).

It turns out that up to group isomorphism, we still obtain the same projec-
tive special unitary group PSUn(Fq) regardless of choice of sesquilinear form,
so this reversal in the definition of the form is ultimately not a difficulty.

If the graph automorphism ρ has order d, and one takes the field auto-
morphism τ to also have order d by requiring that q = q̃d, take the fixed
points G(q)σ of the resulting order d automorphism σ = ρτ , we (essen-
tially) obtain the standard form of a Steinberg group dD(q), where D is the
Dynkin diagram. By “essentially”, we mean that we may first have to pass
to a bounded index subgroup, and then quotient out by the centre, before
one gets a finite simple group; this is a technical issue which be will briefly
discuss later. Thus for instance PSUn(Fq) is denoted 2An−1(q). (In some
texts such a group would be denoted 2An−1(q̃) instead.) In a similar vein,
the Dynkin diagrams Dn and E6 also obviously support order two automor-
phisms, leading to additional Steinberg groups 2Dn(q), 2E6(q) when q = q̃2 is
a perfect square. The 2Dn(q) class can be interpreted as a class of projective
special orthogonal groups, but the 2E6(q) family does not have a classical
interpretation. A noteworthy special case is D4, which is the unique Dynkin
diagram that also supports an automorphism of order three, leading to the
final class of Steinberg groups, the triality groups 3D4(q) when q = q̃3 is a
perfect cube.

In large characteristic (five and higher), the Chevalley and Steinberg
groups are (up to isomorphism) turn out to be the only way to generate finite
simple groups of Lie type; one can experiment with other cocmbinations of
automorphisms on Chevalley groups but they end up either giving the same
groups up to isomorphism as the preceding constructions, or groups that are
not simple (they do not obey the (B,N) axioms that one can use to easily
test for simplicity). But in small characteristic, where the distinction be-
tween short and long roots can become blurred, there are additional Dynkin
diagram automorphisms. Specifically, for the Dynkin diagrams B2 = C2

and F4 in perfect fields of characteristic two, there is a projective Dynkin
diagram automorphism of order two that swaps the long and short roots,
which induces a automorphism ρ of the Chevalley group which is order two
modulo a Frobenius map (in that ρ2 is given by the Frobenius map x 7→ x2);
see [Ca1993] for the construction. If one combines this automorphism with
a field automorphism τ : x 7→ xq̃ with q equal to 2q̃2, we obtain an order two
automorphism σ that generates the families of Suzuki groups 2B2(22n+1)
and Ree groups 2F4(22n+1). Similarly, the Dynkin diagram G2 in perfect
fields of characteristic three has an automorphism that swaps the short and
long root, and if q = 3q̃2 leads to the final class of Ree groups, 3G2(32n+1).
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In contrast to the Steinberg groups, the Suzuki-Ree groups cannot be easily
viewed as algebraic groups over a suitable subfield; morally, one “wants” to
view 2B2(22n+1) and 2F4(22n+1) as being algebraic over the field of 2n+1/2

elements (and similarly view 3G2(32n+1) as algebraic over the field of 3n+1/2

elements), but such fields of course do not exist4. One can also view the
Steinberg and Suzuki-Ree groups dD(q) (collectively referred to as twisted
groups of Lie type) as being “fractal” subgroups (modulo quotienting by
the centre) of the associated Chevalley group D(q), of relative “fractal di-
mension” about 1/d, with the former group lying in “general position” with
respect to the latter in some algebraic geometry sense; for instance one
could view PSUn(Fq) as a subgroup of PSLn(Fq) of approximately “half
the dimension”, and in general position in the sense that it does not lie in
any (bounded complexity) algberaic subgroup of PSLn(Fq). This type of
viewpoint was formalised quite profitably in [LaPi2011] (and used subse-
quently in [Hr2012], [BrGrTa2011], [BrGrTa2013]).this paper of Larsen
and Pink (and is also used in a forthcoming paper of Breuillard, Green, Gu-
ralnick, and myself).

Remark 12.3.1. We have oversimplified slightly the definition of a twisted
finite simple group of Lie type: in some cases the group G(q)σ is not quite
a simple group. As in the previous section, this can happen for very small
groups (the Chevalley group examples A1(2), A1(3), B2(2), G2(2) mentioned
earlier, but also 2A2(4), 2B2(2), 2G2(3), and 2F4(2)). Another issue (which
already arises in the Chevalley group case if one does not use the adjoint
group) is that the fixed points G(q)σ contain a non-trivial centre and are
only a quasisimple group rather than a simple group. Usually one can quo-
tient out by the centre (which will always be quite small) to recover the finite
simple group, or work exclusively with adjoint groups which are automati-
cally centreless. But there is one additional technicality that arises even in
the adjoint group, which is that sometimes there are some extraneous fixed
points of σ of G(q) that one does not actually want (for instance, they do not
lie in the group generated by the natural analogues of the B and N groups
in this setting, thus violating the (B,N)-axioms). So one sometimes has to
restrict attention to a bounded index subgroup of G(Fq)

σ, such as the group

Op
′
(G(q)σ) generated by those “unipotent” elements whose order is a power

of the characteristic p; an alternative (and equivalent, except in very small
cases) approach is to work with the derived group [G(q)σ, G(q)σ] of G(q)σ,
which turns out to kill off the extraneous elements (which are associated to
another type of automorphism we did not previously discussed, namely the

4Despite superficial similarity, this issue appears unrelated to the “field with one element”

discussed in Remark 12.2.12, although both phenomena do suggest that there is perhaps a useful
generalisation of the concept of a field that is currently missing from modern mathematics.
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diagonal automorphisms). See [GoLySo1998] for a detailed treatment of
these issues.
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lemma, 88
weighted Balog-Szemerédi-Gowers
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