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Abstract. In 1975, Szemerédi famously established that any set of integers of posi-
tive upper density contained arbitrarily long arithmetic progressions. The proof was
extremely intricate but elementary, with the main tools needed being the van der
Waerden theorem and a lemma now known as the Szemerédi regularity lemma, to-
gether with a delicate analysis (based ultimately on double counting arguments) of
limiting densities of sets along multidimensional arithmetic progressions. In this note
we present an arrangement of this proof that incorporates a number of notational
and technical simplifications. Firstly, we replace the use of the regularity lemma by
that of the simpler “weak regularity lemma” of Frieze and Kannan. Secondly, we ex-
tract the key inductive steps at the core of Szemerédi’s proof (referred to as “Lemma
5”, “Lemma 6”, and “Fact 12” in that paper) as stand-alone theorems that can be
stated with less notational setup than in the original proof, in particular involving
only (families of) one-dimensional arithmetic progressions, as opposed to multidimen-
sional arithmetic progressions. Thirdly, we abstract the analysis of limiting densities
along the (now one-dimensional) arithmetic progressions by introducing the notion of
a family of arithmetic progressions with the “double counting property”.

We also present a simplified version of the argument that is capable of establishing
Roth’s theorem on arithmetic progressions of length three.

1. Introduction

In this paper we adopt the convention that the natural numbers N � t1, 2, . . . u begin
at 1, rather than 0. For any natural number N , we let rN s denote the initial segments1

rN s :� tn P N : n ¤ Nu � t1, . . . , Nu,

with the convention that r0s is the empty set. For any natural number K, we define a

length K arithmetic progression, or K-AP for short, to be a K-tuple ~P of the form

~P � a� r �
ÝÝÑ
rKs :� pa� krqkPrKs � pa� r, a� 2r, . . . , a�Krq

for some integer a and natural number r (thus in this paper arithmetic progressions are

always strictly increasing). We abbreviate a � r �
ÝÝÑ
rKs as a �

ÝÝÑ
rKs when r � 1, or

ÝÝÑ
rKs

when a � 0 and r � 1; we will make a (very) slight distinction between the ordered

K-tuple
ÝÝÑ
rKs � p1, . . . , Kq and the unordered K-element set rKs � t1, . . . , Ku. To each

1In general, we will try to use lower case Roman letters to denote elements of initial segments whose
length is denoted by the corresponding upper case letter, thus for instance n P rN s, k P rKs, l P rLs,
h P rHs, etc.. Sets (particularly sets of integers) will usually be denoted in boldface such as A,S;

tuples (particularly arithmetic progressions) will be denoted by symbols with arrows, such as ~P or ~R;
and collections of such tuples will be denoted in calligraphic font such as P or AP.
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Figure 1. Two-dimensional depictions of a 3-AP ~P �
pP p1q, P p2q, P p3qq, a 4-AP ~Q � pQp1q, Qp2q, Qp3q, Qp4qq, and a 5-

AP ~U � pUp1q, Up2q, Up3q, Up4q, Up5qq. We will view the upwards and
rightwards directions in such depictions as “positive”, so that all three
arithmetic progressions depicted here are increasing, in agreement with
the definition of such progressions in this paper.

K-AP ~P , we associate the increasing affine-linear function P : ZÑ Z defined by

P pkq :� a� kr,

thus ~P � pP p1q, . . . , P pKqq. We say that a K-AP ~P � a� r �
ÝÝÑ
rKs is contained in a set

of integers A � Z if a� kr P A for all k P rKs, or equivalently if P prKsq � A.

Arithmetic progressions lie in the integers, which are a one-dimensional set. However,
when depicting such progressions, it will be more convenient to draw them as two-
dimensional objects: see Figure 1.

In 1927, van der Waerden [11] proved:

Theorem 1.1 (Van der Waerden’s theorem). [11] Let K,M be natural numbers, and let
N be a natural number that is sufficiently large depending on K,M . If rN s is partitioned
into at most M colour classes, then one of the colour classes contains a K-AP.

Equivalently: if the natural numbers are partitioned into finitely many colour classes,
one of them will contain arbitrarily long arithmetic progressions.

A significant strengthening of van der Waerden’s theorem was established by Szemerédi
[9] in 1975. If A is a set of integers, then its upper Banach density BDpAq is defined to
be the quantity

BDpAq :� lim sup
NÑ8

sup
hPZ

|AX ph� rN sq|

N

where we use |E| to denote the cardinality of a finite set E, and h�E � th�n : n P Eu
to denote a translate of a set of integers E by a shift h P Z. In Szemerédi then showed

Theorem 1.2 (Szemerédi’s theorem). [9] Let A � N have positive upper Banach den-
sity. Then A contains a K-AP for every K P N.
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The K � 1, 2 cases of this theorem are trivial. The K � 3 case was established in 1953
by Roth [7] using Fourier-analytic methods. The K � 4 case was significantly more
difficult, and was first established in 1969 by Szemerédi [8], prior to Szemerédi’s 1975
proof in [9] of Theorem 1.2 in full generality. It is not difficult to show that Theorem
1.2 implies Theorem 1.1, but the converse implication is far less clear. One can replace
the notion of upper Banach density here by other notions of density and still obtain an
equivalent theorem; we leave the description of such variants to the interested reader.

In contrast to Roth’s argument, Szemerédi’s argument was purely combinatorial, and
involved three main ingredients. The first is van der Waerden’s theorem (Theorem 1.1).
The second was a surprisingly delicate and recursive analysis of densities of sets of inte-
gers along certain arithmetic progressions (or higher dimensional analogues of arithmetic
progressions). This analysis was quite technically involved, but was ultimately based
on the classical combinatorial technique of double counting. The final ingredient was a
lemma [9, Lemma 1] which, in its modern formulation, is now known as the Szemerédi
regularity lemma; see e.g. [10].

In the original proof of Szemerédi, these three ingredients were interwoven together
in a quite complicated manner (see in particular the diagram2 on [9, p.202]). Since
the original proof of this theorem, several quite different proofs of this theorem have
been given; we mention in particular the ergodic theory proof of Furstenberg [2], the
higher-order Fourier analytic proof of Gowers [3], and the hypergraph regularity proofs
of Gowers [4] and Nagle-Rödl-Schacht-Skokan [5], [6]. Our focus here will however be
on the original argument of Szemerédi.

In this paper we present an arrangement of Szemerédi’s argument that contains a num-
ber of notational and technical simplifications. Firstly, we replace the use of the regu-
larity lemma by a simpler “weak regularity lemma” of Frieze and Kannan [1], which we
state here:

Lemma 1.3 (Weak regularity lemma). [1] Let V,W be finite sets, let ε ¡ 0, and let
E � V �W. Then there exist partitions V � V1 Y � � � YVA and W � W1 Y . . .WB

with A,B � Oεp1q and real numbers 0 ¤ da,b ¤ 1 for a P rAs, b P rBs such that������|pF�Gq X E| �
¸
aPrAs

¸
bPrBs

da,b|FXVa||GXWb|

������ ¤ ε|V||W| (1.1)

for all F � V and G � W.

Here we use Oεp1q to denote an expression bounded in magnitude by a constant Cε
that depends only on ε. This lemma can be established as a corollary of the Szemerédi
regularity lemma; however, by proving Lemma 1.3 directly one can obtain far better
quantitative bounds on A,B than those provided by that regularity lemma (of expo-
nential type in 1{ε, rather than tower-exponential type). See [1] for further discussion.
From a graph theory perspective, one can interpret the triplet pV,W,Eq as a bipartite

2Note that the arrow from Fact 12 to Lemma 6 in that diagram should be reversed.
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graph connecting the two vertex sets V,W, but we will not use graph-theoretic termi-
nology further in this paper. For sake of completeness, we provide a proof of Lemma
1.3 in Appendix A.

Actually, it will be convenient to use the following consequence of the weak regularity
lemma, that allows one to approximately compute a large number of statistics |FXEw|,
w P W using a much smaller number of statistics |F X Va|, a P rAs, where A can be
significantly smaller than W:

Corollary 1.4 (Consequence of weak regularity lemma). Let V,W be finite sets, let
ε ¡ 0, and for each w P W, let Ew be a subset of V. Then there exist a partition
V � V1 Y � � � Y VA with A � Oεp1q, and real numbers 0 ¤ ca,w ¤ 1 for a P rAs and
w P W, such that for any set F � V, one has������|FX Ew| �

¸
aPrAs

ca,w|FXVa|

������ ¤ ε|V|

for all but ε|W| values of w P |W|.

Proof. We apply Lemma 1.3 with E :� tpv, wq P V � W : v P Ewu, and ε replaced
by ε2{2. This creates partitions V � V1 Y � � � Y VA and W � W1 Y � � � Y WB with
A,B � Oεp1q and coefficients 0 ¤ da,b ¤ 1 for a P rAs, b P rBs such that������|pF�Gq X E| �

¸
aPrAs

¸
bPrBs

da,b|FXVa||GXWb|

������ ¤
ε2

2
|V||W|

for all F � V and G � W. If we define ca,w to equal da,b whenever a P rAs, b P rBs,
and w P Wb, then we can rearrange the left-hand side of the above inequality to obtain������

¸
wPG

�
�|FX Ew| �

¸
aPrAs

ca,w|FXVa|

�


������ ¤

ε2

2
|V||W|.

Applying this inequality with G equal to the set where the summand is positive (resp.
negative) and summing, we conclude that

¸
wPW

������|FX Ew| �
¸
aPrAs

ca,w|FXVa|

������ ¤ ε2|V||W|

for all F � V, and the claim now follows from Markov’s inequality. �

In this paper, the weak regularity lemma will be combined with van der Waerden’s
theorem to establish an important “mixing lemma” (see Theorem 4.1 below) which will
then become a key ingredient in the proof of Szemerédi’s theorem. Neither the regularity
lemma nor van der Waerden’s theorem will be used outside of the proof of this mixing
lemma.
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A prominent feature of the original argument of Szemerédi is the frequent use of mul-
tidimensional arithmetic progressions

pa� n1r1 � � � � � nDrDqpn1,...,nDqPrN1s�����rNDs

for relatively large values of dimension D (in fact to locate K-APs, one needs to use
dimensions D of size D � Op2Kq). In particular, the three most important propositions
in [9], which are labeled Lemma 5, Lemma 6, and Fact 12 in that paper, heavily involve
these progressions, making them somewhat difficult to interpret as stand-alone proposi-
tions. The second simplification introduced in this paper is to “refactor” the argument
so that the only progressions one encounters in the course of the argument are either
one-dimensional arithmetic progressions

~P � pa� nrqnPrNs

or two-dimensional “rectangles”

~R � pa� hr � lsqph,lqPrHs�rLs.

In particular, the analogues of [9, Lemma 5, Lemma 6, Fact 12] in this paper (namely,
Theorem 6.8, Proposition 6.9, and Claim 6.1) only involve (families of) one-dimensional
arithmetic progressions, and which are somewhat easier to interpret in a stand-alone
fashion. For instance, here are two such propositions which will play a key role in the
K � 3 case (i.e. in proving Roth’s theorem):

Theorem 1.5 (Cp3, t2uq). Let L be a natural number, and let S be a set of integers of
upper Banach density at least 1� 1

10L
. Suppose that S is partitioned into finitely many

colour classes. Then there exists a colour class A � S, together with a family p~PlqlPrLs
of 3-APs ~Pl � pPlp1q, Plp2q, Plp3qq indexed by l P rLs, obeying the following properties:

(i) For all l P rLs, ~Pl is contained in S.
(ii) For all l P rLs, Plp1q lies in A.
(iv) The tuple pPlp2qqlPrLs is an L-AP.

(The property (iii) turns out to be redundant in the k � 3 case and is thus omitted here;
see Theorem 1.7 or Claim 6.1 below.) See Figure 2.

Theorem 1.6 (Cp3, t3uq). Let L be a natural number, and let S be a set of integers of
upper Banach density at least 1� 1

10L
. Suppose that S is partitioned into finitely many

colour classes. Then there exists a colour class A � S, together with a family p~PlqlPrLs
of 3-APs ~Pl � pPlp1q, Plp2q, Plp3qq indexed by l P rLs, obeying the following properties:

(i) For all l P rLs, ~Pl is contained in S.
(ii) For all l P rLs, Plp1q and Plp2q lie in A.
(iv) The tuple pPlp3qqlPrLs is an L-AP.

See Figure 3.
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Figure 2. A configuration produced by Theorem 1.5, with L � 5 and
the 3-APs ~P2, ~P3 omitted. Blue elements denote elements of A; gray
elements denote elements of S (which may potentially also lie in A).

Figure 3. A configuration produced by Theorem 1.6, with L � 5 and
the 3-APs ~P2, ~P3 omitted, and with the same colouring conventions as
Figure 3. In this particular case we have a collision P1p1q � P5p1q, but
such collisions are not prohibited by the theorem.

Figure 4. A configuration produced by Roth’s theorem.

The notations Cp3, t2uq and Cp3, t3uq come from a more general claim CpK,Ωq that
will be defined in Claim 6.1 below. Informally, one can think of Cp3, t2uq as “one third”
of Roth’s theorem, in that it produces a family of 3-APs with just one element in a
good set A; similarly Cp3, t3uq can be thought of as “two thirds” of Roth’s theorem,
in that it produces a family of 3-APs with two elements in such a good set. (Compare
Figure 4 to Figures 2, 3.) A key technical difficulty here is that the set S has upper
Banach density slightly less than one, rather than equal to 1; the claims would follow
easily from van der Waerden’s theorem in the latter case.

In Section 5 we give a self-contained proof of Roth’s theorem, by first giving a short
proof of Theorem 1.5, and then using that theorem (together with van der Waerden’s
theorem and the weak regularity lemma, together with double counting arguments)
to prove Theorem 1.6, and finally using double counting arguments to derive Roth’s
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Figure 5. The logical structure of the proof of Roth’s theorem (blue)
in this paper. Key subtheorems are in gray; general-purpose tools are
uncoloured. The structure of dependencies is actually slightly simpler
than what is depicted here; for instance, the derivation of Roth’s theorem
from Proposition 3.5, Theorem 3.6, Theorem 5.2, and Theorem 4.1 does
not use the full strength of Theorem 4.1, but rather the simpler component
(i) of that theorem, which does not require Theorem 1.1 or Corollary 1.4
to prove.

theorem from Theorem 1.6; see Figure 5. This is by no means the shortest proof of
Roth’s theorem in the literature, but it serves as a warmup for the proof of the general
case of Szemerédi’s theorem, which has a slightly different top-level structure but uses
essentially the same low-level ingredients; see Figure 6.

The third main simplification in this paper regards the analysis in [9, Section 3] of
limiting densities of sets along arithmetic progression. A key technical difficulty arises
from a distinction between (various notions of) upper density and density. For instance,
suppose A � N has upper Banach density BDpAq equal to δ. Then there exists a

sequence of intervals hn � rNns with Nn Ñ 8 such that |AXphn�rNnsq|
Nn

converges to δ.

However, for all other intervals h� rN s, one only has an upper bound

|AX ph� rN sq|

N
¤ δ � op1q

as N Ñ 8, but not necessarily the matching lower bound

|AX ph� rN sq|

N
¥ δ � op1q.

In particular there can exist arbitrarily large intervals h � rN s in which the density
of A is far smaller than δ. In this particular case, one can eliminate this problem by
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Figure 6. The logical structure of the proof of Szemerédi’s theorem
(blue) in this paper. Key subtheorems are in gray; general-purpose tools
are uncoloured.

restricting the class th � rN s : N P Nu of intervals one is measuring density on to just
the subsequence thn�rNns : n P Nu. The set A will now have a limiting density δ (and
not just upper density δ) “along” this subsequence of intervals.

In the argument of Szemerédi [9], after using the previous simplifications to work with
one-dimensional progressions, one is measuring upper densities or densities of sets A
of integers along various collections P of arithmetic progressions ~P (which are not

necessarily intervals
ÝÝÑ
rN s). Analogously to the above discussion, if A has some upper

density δ along such a family P , it is not difficult to pass to a subfamily of progressions P 1

along which A has density δ. However, it is important in [9] that the resulting subfamily
P 1 of progressions is compatible with a number of “double counting” arguments. In this
paper we abstract this compatibility by introducing the concept of the double counting
property for such a family of progressions P 1. We will define this property formally in
Definition 3.4 below, but we describe just one typical consequence of this property: if
one has a “H �N -rectangle”

~R � pa� hr � nsqph,nqPrHs�rNs

for some integers a and natural numbers r, s,H,N , where N is much larger than H
(which is in turn also assumed to be large), and all of the H “columns” pa�hr�nsqnPrNs,
h P rHs lie in P 1, then almost all of the N “rows” pa� hr� nsqhPrHs, n P rN s also need
to lie in P 1; see Proposition 3.5(ii) for a precise statement. The analysis in [9, Section
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3] can then be abstracted into a standalone statement (Corollary 3.7 below) that does
not require inputs such as van der Waerden’s theorem or the regularity lemma to prove.

1.1. Some ideas of the proof. We now give an informal discussion of some of the
ideas used in the arguments in this paper. We begin with a discussion of a derivation
of Roth’s theorem from Theorem 1.6, which is a relatively simple implication that
nevertheless uses many of the key methods of the paper, omitting the formal details
which may be found in Section 5.3. The first step is to observe (by a standard and
elementary argument) that Theorem 1.6 implies a “bounded” variant, in which the set
S now has density at least 1� 1

10L
inside a single, sufficiently large interval rN s (where

N is large compared to the number of colours used), as opposed to being an infinite set
of upper Banach density at least 1� 1

10L
; see Theorem 5.2 below for a precise statement.

Now let A be a set of integers with positive upper Banach density. Let δ be the upper
density of A along all arithmetic progressions, that is to say

δ :� lim sup
NÑ8

sup
aPZ,rPN

1

N
|tn P rN s : a� nr P Au|.

Szemerédi’s theorem (Theorem 1.2) implies that in fact δ is equal to one, but we cannot
invoke that theorem currently as that would be circular; the best we can say for now is
that 0   δ ¤ 1. By construction, A has density at most δ � op1q along any arithmetic

progression ~P as the length of that progression goes to infinity, and has density equal
to δ � op1q for some sequence of arithmetic progressions of length going to infinity.

We will informally3 refer to a (long) arithmetic progression as “saturated” if A has
density δ � op1q along that progression. By a double counting argument, we will be
able to find parameters 1 ¤ L ¤ H ¤ N (with L large, H much larger than L, and N

much larger than H or L), and a N -AP ~U � pUp1q, . . . , UpNqq, such that if one denotes
S1 to be the set of all n P rN s for which the H-AP pUpn � hqqhPrHs is saturated, then
S1 will have density at least 1 � 1

10L
. Furthermore, one can colour S1 by 2H colours by

assigning to each n the set th P rHs : Upn � hq P Au as a colour. One can then apply
(the bounded version of) Theorem 1.6 to conclude that there is a “perfect” colour class

A1 of S1 and a family p~PlqlPrLs of 3-APs ~Pl such that for all l P rLs, Plp1q and Plp2q lie
in A1 and Plp3q lie in S1, while the L-tuple pPlp3qqlPrLs forms an L-AP.

To prove Roth’s theorem, we will restrict attention to 3-APs of the form

pUpPlp1q �Qp1qq, UpPlp2q �Qp2qq, UpPlp3q �Qp3qqq

where l P rLs and ~Q � pQp1q, Qp2q, Qp3qq is a 3-AP in rHs. It is easy to see that such
3-tuples are automatically 3-APs. Because Plp1q and Plp2q lie in the colour class A1, we
will have UpPlp1q�Qp1qq, UpPlp2q�Qp2qq P A precisely when Qp1q and Qp2q lie in the
“perfect colour” P � rHs associated to the colour class A1. Crucially, this class does not
depend on the parameter l. If one then lets E � rHs denote the collection of all numbers

3To make this rigorous, one needs to carefully choose an explicit decay rate for op1q; see the proof of
Theorem 3.6. The terminology of “saturated” and “perfect” progressions is adapted from the original
paper [9] of Szemerédi.
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Qp3q, where ~Q is a 3-AP in H with Qp1q, Qp2q P P, then it is not difficult to show that
E has positive density in rHs (with the bound depending only on δ). To finish locating
a 3-AP in A, it thus suffices to find l P rLs and h P E such that UpPlp3q � hq P A.

Now consider the H � L-rectangle

~R :� pUpPlp3q � hqqph,lqPrHs�rLs.

By construction, all of the L rows pUpPlp3q � hqqhPrHs, l P rLs of this rectangle are
saturated. A double counting argument then implies that most of the H columns
pUpPlp3q � hqqlPrLs, h P rHs of this rectangle are also saturated; in particular, we can
find h P E such that the associated column pUpPlp3q�hqqlPrLs is saturated. In particular,
this column will contain an element of A, and we are done.

A key step in the above argument was the location of a “good” l P rLs for which the set

th P E : UpPlp3q � hq P Au

was well controlled (and in particular was non-empty). For the more general arguments
below (and in particular when trying to derive Theorem 1.6 from Theorem 1.5), it will
turn out that we will need an l which is “good” for multiple sets Ew � rHs simul-
taneously, where w ranges over some large finite index set W. If the index set W is
bounded, then it turns out that one can accomplish this by combining the above double
counting arguments with van der Waerden’s theorem (Theorem 1.1), roughly speaking
because the latter theorem allows one to restrict to a long arithmetic progression of l’s
in which the behavior of each of the sets Ew “is constant in l”. On its own, this van
der Waerden argument is insufficient to treat the case when W is extremely large; how-
ever, if one combines the argument with the weak regularity lemma (or more precisely,
Corollary 1.4) then one can treat this case also (at the cost of losing control of a tiny
fraction of the Ew), basically by using the regularity lemma to reduce back to the case
of boundedly many sets. For the formal details of this argument, see Section 4.

The proof of Szemerédi’s theorem (Theorem 1.2) in full generality proceeds along sim-
ilar lines, except that the statements Cp3, t2uq and Cp3, t3uq that were formalised in
Theorem 1.5 and Theorem 1.6 respectively must be replaced by a longer sequence of
more complicated statements CpK,Ωq of this type, in which one works with progres-

sions ~P~l parameterised by a tuple ~l P rLsΩ rather than a scalar l P rLs. We present a
typical such statement here; for the general case, see Claim 6.1 below.

Theorem 1.7 (Cp4, t2, 4uq). Let L be a natural number, and let S be a set of in-
tegers of upper Banach density at least 1 � ε, where ε ¡ 0 is sufficiently small de-
pending on L. Suppose that S is partitioned into finitely many colour classes. Then
there exists a colour class A � S, together with a family p~Pl2,l4qpl2,l4qPrLs2 of 4-APs
~Pl2,l4 � pPl2,l4p1q, Pl2,l4p2q, Pl2,l4p3q, Pl2,l4p4qq indexed by a pair pl2, l4q P rLs

2, obeying the
following properties:

(i) For all l2, l4 P rLs, ~Pl2,l4 is contained in S.
(ii) For all l2, l4 P rLs, Pl2,l4p1q lies in A.
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(iii) The colours of Pl2,l4p2q and Pl2,l4p3q are allowed to depend on l2, but are indepen-
dent of l4, thus for instance Pl2,l4p3q and Pl2,l14p3q have the same colour whenever
l2, l4, l

1
4 P rLs.

(iv) For any l4 P rLs, the tuple pPl2,l4p2qql2PrLs is an L-AP. Similarly, for any l2 P rLs,
the tuple pPl2,l4p4qql4PrLs is an L-AP.

The bulk of the proof of Theorem 1.2 is then concerned with taking statements CpK,Ωq
(of which Theorem 1.7 above is typical) and using them to establish further statements
CpK,Ω1q of the same type. For instance, the statement Cp4, t2, 4uq above will be used
to prove Cp4, t1, 2, 4uq, which will in turn be used to establish Cp4, t3, 4uq, and so forth;
the procedure here is analogous to that of incrementing a binary decimal (note that
22�1 � 24�1 � 10 increments to 21�1 � 22�1 � 24�1 � 11, which in turn increments
to 23�1 � 24�1 � 12). In particular, the proof of Theorem 1.2 for K-APs will require
Op2Kq implications of this form. (In the case of Roth’s theorem, we will use an ad hoc
shortcut to get from Cp3, t2uq directly to Cp3, t3uq, without the need to pass through
an auxiliary statement Cp3, t1, 2u).)

1.2. Acknowledgments. This work originated from a working group with Shabnam
Akhtari, Irfam Alam, Renling Jin, Steven Leth, Karl Mahlburg, Paul Potgieter, and
Henry Towsner at the AIM workshop on “Nonstandard methods in combinatorial num-
ber theory” during Aug 14–18, 2017; it also draws on some earlier unpublished notes of
the author at www.math.ucla.edu/�tao/preprints/Expository/szemeredi theorem.dvi

and terrytao.wordpress.com/2012/03/23. The author is indebted to the other mem-
bers of the group for suggestions, encouragement, and much valuable discussion, and to
Paul Epstein and the anonymous referee for a careful reading. The author is supported
by NSF grant DMS-1266164, the James and Carol Collins Chair, and by a Simons
Investigator Award.

2. Notation

As usual, we use the asymptotic notation X � OpY q to denote the estimate |X| ¤ CY
for an absolute constant C. If instead we need the constant to depend on one or more
parameters, we will denote this by subscripts, thus for instance X � OkpY q denotes the
estimate |X| ¤ CkY for some Ck depending on k.

A prominent feature of Szemerédi’s arguments in [9] is the presence of a large number
of parameters, most of which are assumed to be either very large or very small with
respect to previously introduced parameters. To formalise this, it is convenient to use
the following somewhat exotic asymptotic notation: when we write X Î Y , we mean
that Y is a real number that is sufficiently large depending on X and all free variables
that occur to the left of X, thus we have Y ¥ F pX, . . . q, where F is a suitable fixed
function of X and all preceding free variables. We also write X Î 1

Y
to denote that Y

is a sufficiently small positive real depending on X and all preceding free variables. We
illustrate this notation with some examples involving a sequence fn : R Ñ R, n P N of
functions:
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 The functions fn are individually continuous iff, for every n P N, every x P R
and all 0   1

ε
Î 1

δ
, one has |fnpyq � fnpxq| ¤ ε whenever y P R with |y � x| ¤ δ.


 The functions fn are individually uniformly continuous iff for every n P N and
for all 0   1

ε
Î 1

δ
, one has |fnpyq�fnpxq| ¤ ε whenever x, y P R with |y�x| ¤ δ.


 The sequence fn is equicontinuous iff, for every x P R and all 0   1
ε
Î 1

δ
, one

has |fnpyq � fnpxq| ¤ ε whenever n P N and y P R with |y � x| ¤ δ.

 The sequence fn is uniformly equicontinuous iff, for all 0   1

ε
Î 1

δ
, one has

|fnpyq � fnpxq| ¤ ε whenever n P N and x, y P R with |y � x| ¤ δ.

We will often concatenate several instances of above asymptotic notation; for instance,
if we write X, Y Î Z Î W , this means that Z is sufficiently large depending on X, Y
and preceding free variables, while W is sufficiently large depending on X, Y , Z, and
preceding free variables.

If ~P is a K-AP, we write |~P | � K to denote its length, and use AP to denote the

collection of all arithmetic progressions ~P (of any length). If ~P is a K-AP, we define the

uniform probability measure µ~P on ~P to be the measure on Z defined by the formula

µ~P pAq :�
1

K
|ti P rKs : P piq P Au|

for all A � Z. As the name suggests, µ~P is nothing more than the uniform probability
measure on tP p1q, . . . , P pKqu.

Let L,H be natural numbers. We define a rectangle of length L and height H, or a
L�H-rectangle for short, to be a tuple of the form

~R � pa� lr � hsqpl,hqPrLs�rHs

with a P Z and r, s P N. Note that we do not insist that the LH integers a � lr � hs
for pl, hq P rLs � rHs are all distinct, although this will automatically be the case if we

hold l fixed, or if we hold h fixed. As with progressions, the rectangle ~R induces an
affine-linear increasing function R : Z2 Ñ Z from Z2 (with the product ordering) to Z,
defined by

Rpl, hq :� a� lr � hs

for pl, hq P Z. We define the rows ~Rh, h P rHs of the rectangle ~R to be the L-APs

~Rh :� pRpl, hqqlPrLs

and similarly define the columns ~Rl, l P rLs of the rectangle to be the H-APs

~Rl :� pRpl, hqqhPrHs;

see Figure 7. We define the uniform probability measure µ~R on the rectangle ~R by the
formula

µ~RpAq :�
1

LH
|tpl, hq P rLs � rHs : Rpl, hq P Au|.

We caution that this is the uniform measure on the multi-set tRpl, hq : pl, hq P rLs�rHsu,
in which one takes into account the possible multiplicity of representation of a given
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Figure 7. A rectangle ~R of length L � 3 and height H � 5 and a
selection of its entries, together with the row ~R5 and column ~R2.

integer in the form Rpl, hq for pl, hq P rLs � rHs. We observe the basic double counting
identity

µ~R �
1

H

¸
hPrHs

µ~Rh
�

1

L

¸
lPrLs

µ~Rl . (2.1)

Given two probability measures µ, ν on the integers Z, we define the total variation
distance dTV pµ, νq between them by the formula

dTV pµ, νq :� sup
A�Z

|µpAq � νpAq|. (2.2)

We have the following simple but important computation, that allows one to approxi-
mate the uniform distribution on a long arithmetic progression by the uniform distri-
bution on a rectangle with one long side and one much shorter side:

Lemma 2.1. Let 1 ¤ H ¤ N be natural numbers, and let ~P be an N-AP. Let ~R be the
H �N-rectangle

~R :� pP pi� jqqpj,iqPrHs�rNs.

Then dTV pµP , µRq ¤ 2H
N

.

Proof. Let A � Z. Then

µ~RpAq �
1

NH

¸
hPrHs

|tn P rN s � h : P pnq P Au|

and hence

µ~RpAq � µ~P pAq �
1

NH

¸
hPrHs

p|tn P rN s � h : P pnq P Au| � |tn P rN s : P pnq P Au|q.

But rN s and rN s � h differ by at most 2H elements, giving the claim. �

3. Density along progressions

Let P � AP be a collection of arithmetic progressions. We say that P is unbounded if
the set t|~P | : ~P P Pu is unbounded, that is to say P contains arithmetic progressions
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of arbitrarily large length. If P is unbounded and A � Z, we define the upper density
dPpAq of A along P by the formula

dPpAq :� lim sup
|~P |Ñ8:~PPP

µ~P pAq � inf
NPZ

sup
~PPP:|~P |¥N

µ~P pAq

and similarly define the lower density

dPpAq :� lim inf
|~P |Ñ8:~PPP

µ~P pAq � sup
NPZ

inf
~PPP:|~P |¥N

µ~P pAq.

Clearly one has
0 ¤ dPpAq ¤ dPpAq ¤ 1.

If we have dPpAq � dPpAq, then we denote this quantity by dPpAq, and say that A has
density dPpAq along P . Otherwise we say that A does not have a density along P .

Examples 3.1. If P is the collection of initial segments
ÝÝÑ
rN s, N P N, and A is a subset

of N, then dPpAq, dPpAq, and (if it exists) dPpAq are the upper natural density, lower
natural density, and natural density of A respectively. Similarly, if P is the collection

of shifted intervals a �
ÝÝÑ
rN s with a P Z and N P N, and A � Z, then dPpAq is the

upper Banach density BDpAq of A. One could make a similar remark for lower Banach
density or Banach density, but we will not use these concepts in this paper.

Remark 3.2. Szemerédi’s theorem (Theorem 1.2) implies (and is in fact equivalent to)
the assertion that any set of positive upper Banach density will have density 1 along
AP . Unfortunately, we are not allowed to use this fact in the proof of Theorem 1.2, as
it will be circular! Nevertheless, this observation does imply that many of the results in
this paper become rather trivial to prove once one is permitted to invoke Szemerédi’s
theorem.

One can interpret upper density or density using the asymptotic notation from the
previous section. Indeed, if P is an unbounded family of progressions and A � Z, then
whenever one has parameters

1 ¤
1

ε
Î N

then one has
µ~P pAq ¤ dPpAq � ε (3.1)

whenever ~P is an arithmetic progression in P of length at least N ; furthermore, we have
the stronger claim

|µ~P pAq � dPpAq| ¤ ε (3.2)

for at least one such progression ~P . If A has a density along P , then in fact we have

|µ~P pAq � dPpAq| ¤ ε (3.3)

for all progressions ~P in P of length at least N .

It is easy to verify the subadditivity property

dPpAYBq ¤ dPpAq � dPpBq (3.4)

of upper density whenever A,B � Z and P is an unbounded family of progressions.
Iterating this, we immediately conclude
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Lemma 3.3 (Pigeonhole principle for upper density). Let P � AP be an unbounded
family of arithmetic progressions. If S � Z has positive upper density along P, and S
is partitioned into finitely many colour classes, then at least one of the colour classes
will also have positive upper density along P.

We now come to a key property of certain families of arithmetic progressions.

Definition 3.4 (Double counting property). A collection P � AP of arithmetic pro-
gressions is said to have the double counting property if, whenever one has

1 ¤
1

ε
Î L1 Î L2, (3.5)

then whenever ~R1 is an L1 �H1-rectangle for some H1, and ~R2 is an L2 �H2-rectangle
for some H2, with the property that

dTV pµ~R1
, µ~R2

q ¤
1

L1

, (3.6)

and such that all the H2 rows p~R2qi, i P rH2s of ~R2 lie in P , then all but at most εH1 of

the H1 rows p~R1qi, i P rH1s of ~R1 lie in P .

Informally, the double counting property asserts that if an arithmetic progression of
L2-APs p~R2qi are in P , and one “rearranges” these progressions (up to a small error)

into a progression of much shorter L1-APs p~R1qi, then most of these shorter progressions
will also lie in P .

Our main application of the double counting property will proceed via the following
proposition:

Proposition 3.5. Let P � AP be a family of arithmetic progressions with the double
counting property. Select parameters

1 ¤
1

ε
Î H Î N.

(i) If ~P is an N-AP in P, then for all but at most εN of the elements n of rN s, the
H-AP

pP pn� hqqhPrHs
lies in P.

(ii) If ~R is a H � N-rectangle such that all H columns ~Rh, h P rHs of ~R lie in P,

then all but at most εN of the rows ~Rn, n P rN s lie in P.

Proof. To prove (i), we apply Definition 3.4 with R1 being the H �N -rectangle

R1 :� pP pn� hqqph,nqPrHs�rNs

and R2 being the N � 1-rectangle

R2 :� pP pnqqpn,1qPrNs�r1s.

The claim then follows from Lemma 2.1.
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To prove (ii), we apply Definition 3.4 with ~R1 being the H � N -rectangle ~R, and ~R2

being the N �H-rectangle

~R2 :� pRph, nqqpn,hqPrNs�rHs

which can be thought of as a “transpose” of ~R. The claim then follows from (2.1). �

Clearly AP has the double counting property. The main result of this section is that
one can effectively upgrade upper density to density while retaining the double counting
property:

Theorem 3.6 (Upgrading upper density to density). Let P � AP be an unbounded
family of progressions with the double counting property. Let A � Z have upper density
δ along P for some 0 ¤ δ ¤ 1. Then there exists a unbounded subfamily P 1 � P of P
with the double counting property, such that A has density δ along P 1.

Proof. We need a decreasing sequence cpNq ¡ 0 of positive numbers that goes to zero
as N Ñ 8 in a sufficiently slow fashion; this will be specified more later. We define P 1

to be the set of all arithmetic progressions ~P P P such that

|µ~P pAq � δ| ¤ cp|~P |q. (3.7)

(In the language of Szemerédi’s paper [9], P 1 consists of those arithmetic progressions
in P that are “saturated” with respect to A.)

By (3.2), we see that for any ε ¡ 0, there exist arithmetic progressions ~P P P of
arbitrarily large length with |µ~P pAq � δ| ¤ ε. Thus, if the sequence c is sufficiently
slowly decaying, P 1 will also contain arithmetic progressions of arbitrarily large length,
and will thus be unbounded. As c goes to zero, we see from (3.7) that A has density δ
along P 1.

It remains to show that P 1 has the double counting property. Let ε, L1, L2, H1, H2, ~R1, ~R2

be as in Definition 3.4. For the purposes of (3.5), we consider the family P , the function
c, and the set A to be free variables; thus for instance, L2 is assumed sufficiently large
depending on L1, ε, c,P ,A.

From (3.7) and (3.5) we have

µp~R2qh
pAq ¥ δ �

1

L1

for all h P rH2s. Averaging in h using (2.1), we conclude that

µ~R2
pAq ¥ δ �

1

L1

,

and thus by (3.6), (2.2) and the triangle inequality, we have

µ~R1
pAq ¥ δ �

2

L1

.
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Applying (2.1) again, we obtain

¸
hPrH1s

µp~R1qh
pAq ¥

�
δ �

2

L1



H1.

As P had the double counting property, we see that all but ηpL1qH1 of the rows p~R1qh,
h P rH1s lie in P , where ηpL1q is a quantity that goes to zero as L1 Ñ 8, but does not
depend on c. Thus we have

¸
hPrH1s:p~R1qhPP

µp~R1qh
pAq ¥

�
δ �

2

L1

� ηpL1q



H1. (3.8)

Next, from (3.1) one has
µp~R1qh

pAq ¤ δ � η1pL1q

for all h in the above sum, where η1pL1q is a quantity that goes to zero as L1 Ñ 8, but
does not depend on c. We can then rewrite (3.8) as

¸
hPrH1s:p~R1qhPP

pδ � η1pL1q � µpR1qhpAqq ¤

�
2

L1

� ηpL1q � η1pL1q



H1.

and hence by Markov’s inequality, one will have

0 ¤ δ � η1pL1q � µp~R1qh
pAq ¤

2

ε

�
2

L1

� ηpL1q � η1pL1q



(3.9)

for all but at most εH1{2 of the h P rH1s with p~R1qh P P . For c sufficiently slowly
growing, we then have from (3.5) that

|µpR1qhpAq � δ| ¤ cpL1q

for all but at most εH1 of the h P rH1s, and the claim follows. �

We will rely primarily on the following corollary of Theorem 3.6, which roughly corre-
sponds to the content of Section 3 of Szemerédi’s original paper [9].

Corollary 3.7 (Saturated progressions and the perfect colour). Let S � Z be a set of
integers with a positive upper density σ ¡ 0 along AP. Suppose that there is a colouring
c : S Ñ C of S by a finite collection C of colours. Then there exists a “perfect” colour
p P C, with associated colour class A :� ts P S : cpsq � pu, as well as an unbounded
family P � AP of “saturated” arithmetic progressions with the double counting property,
such that A has a positive density δ ¡ 0 along P, and additionally S has density σ along
P.

Proof. Applying Theorem 3.6 with P replaced by AP and A replaced by S, we can
find an unbounded family P 1 � AP of arithmetic progressions with the double counting
property, such that S has density σ along P 1. By Lemma 3.3, there exists a colour
p P C whose associated colour class A has a positive upper density δ ¡ 0 along P 1.
Applying Theorem 3.6 a second time (with P replaced by P 1), we can find an unbounded
subfamily P � P 1 of P 1 with the double counting property, such that A has density δ
along P . The density σ of S along P 1 is of course inherited by the unbounded subfamily
P , and the claim follows. �
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4. Using Van der Waerden’s theorem and the regularity lemma

To motivate the main results of this section we begin with an informal discussion.
Suppose one has an L�H-rectangle ~R (with 1 Î L Î H), and suppose that A is a set

of integers that has density close to δ on all the columns ~Rl, l P rLs of ~R, thus for each
l P rLs one has

|th P rHs : Rpl, hq P Au| � δH.

If E is a given subset of rHs, then if A was suitably “mixing” in nature, one may then
expect to have

|th P E : Rpl, hq P Au| � δ|E|

for a “typical” choice of l P rLs. In general, one would not expect this sort of claim to be
true for any given set E, let alone for a large family Ew of such sets. However, it turns
out that thanks to van der Waerden’s theorem (Theorem 1.1) with the weak regularity
lemma (in the form of Corollary 1.4), one can obtain a useful result of this type for

at least one choice of l P rLs, if the rows ~Ri of the rectangle belong to an unbounded
family of arithmetic progressions with the double counting property, and along which
A has density δ. More precisely, in this section we prove

Theorem 4.1 (Mixing lemma). Let P be an unbounded family of arithmetic progres-
sions with the double counting property, and let A � Z have a density δ along P. Let

1 ¤
1

ε
Î L Î H,

and let ~R be an L�H-rectangle such that all the columns ~Rl, l P rLs lie in P.

(i) (Single mixing) If E � rHs, then there exists l P rLs such that

|th P E : Rpl, hq P Au| ¥ δ|E| � εH.

(ii) (Multiple mixing) If A is a natural number with A Î L, and E1, . . . ,EA � rHs,
then there exists l P rLs such that

||th P Ea : Rpl, hq P Au| � δ|Ea|| ¤ εH

for all a P rAs.
(iii) (Highly multiple mixing) If pEwqwPW is a family of subsets Ew � rHs of rHs

indexed by some finite set W, then there exists l P rLs such that

||th P Ew : Rpl, hq P Au| � δ|Ew|| ¤ εH

for all but at most ε|W| of the w P W.

A key point in (iii) (as compared to (ii)) is that there is no upper bound on the car-
dinality of W. The ability to make assertions that are uniform in such “vertex sets”
W, and thus pass from (ii) to (iii), is entirely thanks to the (weak) regularity lemma.
Meanwhile, the ability to pass from assertions (i) about a single set, to assertions (ii)
about multiple sets, is entirely thanks to the van der Waerden theorem. This mixing
lemma corresponds (very roughly) to the proof of [9, Lemma 4] and portions of [9,
Lemma 5].
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Proof. We begin with (i), which is proven by a standard double-counting argument. By

Proposition 3.5(ii), all but ε
2
H of the rows ~Rh, h P rHs lie in P . By (3.3), one has

µ~Rh
pAq ¥ δ � ε

2
for all such rows. In particular, for all but at most ε

2
H of the h P E,

we have

|tl P rLs : Rpl, hq P Au| ¥
�
δ �

ε

2

	
L

and hence on summing over these h and then double counting,¸
lPrLs

|th P E : Rpl, hq P Au| ¥ δL|E| � εLH.

By the pigeonhole principle, we can thus find l P rLs such that

|th P E : Rpl, hq P Au| ¥ δ|E| � εH,

giving (i).

Now we prove (ii). We may assume that there is a natural number L1 with

1

ε
, A Î L1 Î L.

We can assign to each l P rLs a colour cplq � pcaplqqaPrAs P t�1, 0,�1uA, where for any
a P rAs, caplq is defined to equal �1 if

|th P Ea : Rpl, hq P Au|   δ|Ea| � εH,

to equal �1 if

|th P Ea : Rpl, hq P Au| ¡ δ|Ea| � εH,

and to equal 0 if

||th P Ea : Rpl, hq P Au| � δ|Ea|| ¤ εH.

The number of colour classes here is 3A, which is small compared with L1 or L. By
Theorem 1.1, there exists an L1-AP ~Q in rLs and a colour c � pcaqaPrAs P t�1, 0,�1uA

such that cpQpl1qq � c for all l1 P rL1s.

Suppose that ca � �1 for some a P rAs. Then we have

|th P Ea : RpQpl1q, hq P Au|   δ|Ea| � εH

for all l1 P rL1s. But then the L1 �H-rectangle

pRpQpl1q, hqqpl1,hqPrL1s�rHs

contradicts part (i) (with E replaced by Ea). If instead ca � �1 for some a P rAs, then
we have for all l1 P rL1s that

|th P Ea : RpQpl1q, hq P Au| ¡ δ|Ea| � εH

while from (3.3) we have

|th P rHs : RpQpl1q, hq P Au| ¤ δH �
1

2
εH

and hence

|th P rHszEa : RpQpl1q, hq P Au|   δ|rHszEa| �
1

2
εH.
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This contradicts part (i) (with E now replaced instead by rHszEa and ε replaced by
ε{2). Thus we must have ca � 0 for all a P rAs. Setting l to be one of the elements of
Q (e.g l � Qp1q), we obtain the claim.

Finally, we prove (iii). Using Corollary 1.4, we can find a partition rHs � V1Y� � �YVA

with A � Oεp1q, and real numbers 0 ¤ ca,w ¤ 1 for a P rAs and w P W, such that for
any set C � rHs, one has������|CX Ew| �

¸
aPrAs

ca,w|CXVa|

������ ¤
ε

3
H (4.1)

for all but ε|W|{2 values of w P W.

By part (ii) (with the Ea replaced by Va), we can find l P rLs such that

||th P Va : Rpl, hq P Au| � δ|Va|| ¤
ε

3A
H

for all a P rAs. In particular, from (4.1) (with C :� th P rHs : Rpl, hq P Au) and the
triangle inequality one has������|th P Ew : Rpl, hq P Au| � δ

¸
aPrAs

ca,w|Va|

������ ¤
2ε

3
H

for all but ε|W|{2 values of w P W; from a further application of (4.1) (with C :� rHs)
we also have ������|Ew| �

¸
aPrAs

ca,w|Va|

������ ¤
ε

3
H

for all but ε|W|{2 values of w P W. The claim (iii) now follows from the triangle
inequality. �

5. Roth’s theorem

To demonstrate the above tools in action, we now prove Theorem 1.5, Theorem 1.6, and
Roth’s theorem (the K � 3 case of Theorem 1.2). Our proofs will be slightly ad hoc
in nature in order to achieve certain shortcuts in the proof, and will thus differ slightly
from the lengthier but more systematic arguments in the next section used to prove the
general case of Theorem 1.2.

5.1. Proof of Theorem 1.5. Let L be a natural number, let S � Z have upper Banach
density at least 1� 1

10L
, and suppose S is partitioned into finitely many colour classes.

Then there exists an interval h� rN s with L Î N , such that

|SX ph� rN sq| ¥

�
1�

1

9L



N (5.1)

(say). In particular, we can find n0 P rt
N
8L

us such that h� n0 P S. We let A denote the
colour class that h� n0 belongs to.
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Call a natural number r P rtN
3
us good if h � n0 � r, h � n0 � 2r both lie in S, and bad

otherwise. Since h� n0 � r and h� n0 � 2r both lie in h� rN s, we see from (5.1) that
there are at most 2

9L
N bad elements of rtN

3
us. By the pigeonhole principle, we conclude

that rtN
3
us contains an interval n1 � rLs that consists entirely of good elements. If one

now defines
~Pl :� ph� n0, h� n0 � pn1 � lq, h� n0 � 2pn1 � lqq

for all l P rLs, we see that all the required conclusions of Theorem 1.5 are satisfied. (In

fact we have constructed a configuration in which one has the collision ~P1p1q � � � � �
~PLp1q, but this is not prohibited in the statement of Theorem 1.5.)

5.2. Proof of Theorem 1.6. Before we begin the proof of Theorem 1.6, we observe
that Theorem 1.5 implies the following more “bounded” version.

Theorem 5.1 (C 1p3, t2uq). Let

1 Î L ÎM Î N,

and let S be a subset of rN s of cardinality at least p1 � 1
10L
qN . Suppose that S is

partitioned into M colour classes. Then there exists a colour class A � S, together
with a family p~PlqlPrLs of 3-APs ~Pl � pPlp1q, Plp2q, Plp3qq indexed by l P rLs, obeying the
properties (i), (ii), (iv) of Theorem 1.5.

Proof. Suppose for contradiction that Theorem 5.1 failed. Then there exist parameters

1 Î L ÎM,

a sequence Ni, i P N going to infinity, and sets Si � rNis of cardinality |Si| ¥ p1� 1
10L
qNi

with M -colourings ci : Si Ñ rM s, such that the conclusions of the theorem do not hold
with N,S replaced by Ni,Si for any i. We may recursively find translates hi � rNis of
rNis such that the intervals hi�rNis are disjoint, and such that for any i P N, any 3-AP
or L-AP that contains at least two elements in

�
i1 i hi1 � rNi1s will be disjoint from

hi � rNis; in particular, as L ¥ 3, any 3-AP or L-AP that lies in
�
iPN hi � rNis must in

fact lie in a single one of the hi �Ni.

Now set S :�
�
iPN hi � Si, then S has upper Banach density at least 1 � 1

10L
, and any

K-AP or L-AP that lies in S in fact must lie in a single one of the hi � Si. We can
M -colour S by assigning to each hi � ni P hi � Si the colour cipniq P rM s.

Applying Theorem 1.5, we can find a family p~PlqlPrLs of K-APs ~Pl that obey the con-
clusions (i), (ii), (iv) of that claim for S. By construction of S and conclusion (i), each

of the ~Pl must lie in exactly one of the hi � Si; by conclusion (iii), this index i is inde-

pendent of l. If one now translates all of the ~Pl by �hi, one contradicts the claim that
Si does not obey the conclusions of the theorem, and the claim follows. �

Actually, as the proof of Theorem 1.5 was so short, it is not difficult to modify it to
provide a direct proof of Theorem 5.1; we leave the details to the interested reader.
However, we give the argument above instead, as we will use it later in this paper.



22 TERENCE TAO

Now we prove Theorem 1.6. Let L be a natural number, let S � Z have upper Banach
density at least 1� 1

10L
, and suppose S is partitioned into finitely many colour classes.

Write σ for the upper density of S along AP , thus4 σ ¥ 1 � 1
10L

. Applying Corollary
3.7, one can find a colour class A of S and an unbounded family P � AP of arithmetic
progressions with the double counting property, such that A has a positive density δ ¡ 0
along P , and S has density σ along P .

Now choose parameters

L,
1

δ
Î L1 Î H Î N 1.

As P is unbounded, it contains an N -AP U for some N ¥ N 1. Let S1 � rN s denote
the set of all n P rN s such that the H-AP pUpn � hqqhPrHs lies in P ; also for technical
reasons we require also that

pUpn� hqq
0.9H¤h¤H:h�0 mod 2

and

pUpn� hqq
0.9H¤h¤H:h�1 mod 2

also lie in P . From Proposition 3.5(i), we have

|S1| ¥

�
1�

1

10L1



N.

We can also colour S 1 in 2H colours, by assigning to each n P S 1 the colour

th P rHs : Upn� hq P Au � rHs.

Applying Theorem 5.1, one can find a colour class A1 of S1, together with a family
p~Pl1ql1PrL1s of 3-APs, obeying the following properties:

(i) For all l1 P rL1s, ~Pl1 is contained in S1.
(ii) For all l1 P rL1s, Pl1p1q lies in A1.
(iv) The tuple pPl1p2qql1PrL1s is an L1-AP.

See Figure 8.

Let P � rHs denote the colour associated to A1, thus by property (ii) we have

th P rHs : UpPl1p1q � hq P Au � P

for all l1 P rL1s. By property (i), the H-AP pUpPl1p1q � hqqhPrHs lies in P ; as A has
density δ along P , we conclude from (3.3) that

|P| ¥
δ

2
H

(say).

4In [9, Fact 6], a separate application of van der Waerden’s theorem is used to exclude the case
σ � 1, but in the arrangement of the argument given here, there is no need to do so, leading to a slight
additional simplification.
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Figure 8. Each element Pl1pkq for l1 P rL1s and k P r3s gives rise to
an H-AP pPl1pkq � hqhPrHs, which will almost certainly lie in rN s; these
are depicted here as tall rectangles. When k � 2, 3, these rectangles are
associated to S1 (and are depicted here in grey), implying in particular
that the H-AP pUpPl1pkq � hqqhPrHs is “saturated” in the sense that it
is almost entirely occupied by S and also occupied with positive density
by A. When k � 1, these rectangles additionally lie in the colour class
A1 (and are depicted here in blue), implying in particular that the set
P � th P rHs : UpPl1p1q � hq P Au is “perfect” and does not vary with l1.
The H-APs pUpPl1p2q � hqqhPrHs for l1 P rL1s combine to form an L1 �H-
rectangle, to which Theorem 4.1 may be profitably applied.

For technical reasons we need to remove the topmost portion of P from consideration.
From Proposition 3.5(i), we see that for l1 P rL1s, the L1-APs pUpPl1p1q � h� lqqlPrL1s lie

in P for all but δ
100
H of the h P rHs, which from (3.3) implies that

|PX ph� rL1sq| ¤ 2δL

for all but δ
100
H of the h P rHs. By a covering argument, this implies that����

"
h P P : h ¥

9

10
H

*���� ¤ δ

4
H,

and hence ����
"
h P P : h  

9

10
H

*���� ¥ δ

4
H.
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Figure 9. Three copies of the interval rHs, displayed separately for vi-
sual clarity. The left-most copy of rHs is for parameterizing the “per-
fect” H-APs pUpPl1p1q � h1qqh1PrHs appearing in blue in Figure 8; the
blue portion of this copy depicts the set appearing in (5.2); we have
UpPl1p1q � h1q P A for all h1 in that set. The right-most copy of rHs is
for parameterizing the H-APs pUpPl1p3q � hqqhPrHs; we will only utilise
the upper tenth of these H-APs, in which h ¥ 9

10
H. The middle copy of

rHs parameterises the vertical components pUpPl1p2q � h2qqh2PrHs of the

rectangle ~R; The green portion of this copy depicts the set Eh associated
to some h P W.

In particular, by the pigeonhole principle there exists a parity i P Z{2Z such that����
"
h P P : h  

9

10
H;h � i mod 2

*���� ¥ δ

8
H. (5.2)

Let W consist of all natural numbers h with 9
10
H ¤ h ¤ H and h � i mod 2, thus

|W| ¥
1

30
H (5.3)

(say). From (5.2) we see that for all h P W, there are at least δ
8
H 3-APs ~Q in rHs such

that Qp1q P P and Qp3q � h. Let Eh � rHs denote the set of all Qp2q, where ~Q ranges
over the previously mentioned 3-APs, thus we have

|Eh| ¥
δ

8
H (5.4)

for all h P W. See Figure 9.

By property (iv), the tuple

~R :� pUpPl1p2q � hqqpl1,hqPrL1s�rHs

is an L1�H-rectangle, and by property (i), all the columns ~Rl1 , l1 P rL1s of this rectangle
lie in P . Applying Theorem 4.1(iii) and (5.4), we may thus find l1 P L1 such that

|th1 P Eh : UpPl1p2q � h1q P Au| ¡ 0 (5.5)
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for all but 1
100L

H of the h P W. Also, from (i) we see that the H-AP pUpPl1p3q�hqqhPW
lies in P , which implies in particular (since S has density at least 1� 1

10L
along P) that

UpPl1p3q � hq P S (5.6)

for all but at most 1
9L
H of the h P W .

Comparing these facts with (5.3), we see that W must contain an L-AP h0 � 2 �
ÝÑ
rLs

such that (5.5) and (5.6) hold for all h P h0� 2 �
ÝÑ
rLs. Thus, for each h P h0� 2 �

ÝÑ
rLs, one

can find a 3-AP ~Qh in rHs such that Qhp1q P P, UpPl1p2q�Qhp2qq P A, and Qhp3q � h.
One can then verify that the family

ppUpPl1p1q �Qh0�2lp1qq, UpPl1p2q �Qh0�2lp2qq, UpPl1p3q �Qh0�2lp3qqqqlPrLs

of 3-APs satisfy the required properties for Theorem 1.6.

5.3. Proof of Roth’s theorem. To prove Roth’s theorem, we first observe that The-
orem 1.6 implies a bounded version:

Theorem 5.2 (C 1p3, t3uq). Let

1 Î L ÎM Î N,

and let S be a subset of rN s of cardinality at least p1 � 1
10L
qN . Suppose that S is

partitioned into M colour classes. Then there exists a colour class A � S, together
with a family p~PlqlPrLs of 3-APs ~Pl � pPlp1q, Plp2q, Plp3qq indexed by l P rLs, obeying the
properties (i), (ii), (iv) of Theorem 1.6.

The derivation of Theorem 5.2 from Theorem 1.6 is identical to the derivation of The-
orem 5.1 from Theorem 1.5 and is omitted.

Now let A be a set of positive Banach density. Let δ be the upper density of A along
AP , thus 0   δ ¤ 1. By Theorem 3.6, we may find an unbounded family P � AP of
arithmetic progressions with the double counting property such that A has density δ
along P .

Now select parameters
1

δ
Î L Î H Î N 1.

As P is unbounded, we can find an N -AP ~U � pUpnqqnPrNs in P for some N ¥ N 1. Let
S1 � rN s denote the set of all n P rN s such that the H-AP pUpn�hqqhPrHs lies in P ; also
for technical reasons we require that pUpn� hqqhPrH{2s also lies in P . From Proposition
3.5(i) as before, we have

|S1| ¥

�
1�

1

10L



N.

Once again, we colour S1 in 2H colours, by assigning to each n P S1 the colour

th P rHs : Upn� hq P Au � rHs.

Applying Theorem 5.2, one can find a colour class A1 of S1, together with a family
p~PlqlPrLs of 3-APs, obeying the following properties:
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Figure 10. The analogue of Figure 10 after applying Theorem 5.2. Now
it is the L�H rectangle pUpPlp3q � hqqph,lqPrHs�L, to which Theorem 4.1
may be profitably applied.

(i) For all l P rLs, ~Pl is contained in S1.
(ii) For all l P rLs, Plp1q and Plp2q lie in A1.
(iv) The tuple pPlp3qqlPrLs is an L-AP.

See Figure 10.

Let P � rHs denote the colour associated to A1, thus by property (ii) we have

th P rHs : UpPlp1q � hq P Au � th P rHs : UpPlp2q � hq P Au � P

for all l P rLs. By property (i) and (3.3) as before, we have

|P| ¥
δ

2
H (5.7)

and also (since δ is the upper density of A along AP)

|PX rH{2s| ¥
δ

4
H.
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Figure 11. The analogue of Figure 9. The green portion of the third
copy of rHs depicts the set E.

Let E � rHs denote the set of all numbers of the formQp3q, where ~Q � pQp1q, Qp2q, Qp3qq
is a 3-AP in rHs with Qp1q, Qp2q P P; see Figure 11. By choosing Qp1q, Qp2q to be ele-
ments of PX rH{2s in increasing order, we see that

|E| " δ2H. (5.8)

By property (iv), the tuple

~R :� pUpPlp3q � hqqpl,hqPrLs�rHs

is an L�H-rectangle, and by property (i), all the columns ~Rl, l P rLs of this rectangle
lie in P . Applying Theorem 4.1(i), we can find l P L such that

|th P E : UpPlp3q � hq P Au| ¡ 0,

thus we can find a 3-AP ~Q in rHs with Qp1q, Qp2q P P and UpPlp3q �Qp3qq P A. The
3-AP

pUpPlp1q �Qp1qq, UpPlp2q �Qp2qq, UpPlp3q �Qp3qqq

then lies in A, proving Roth’s theorem.

6. Szemerédi’s theorem

We now present the proof of Theorem 1.2 in full generality, using a variant of the
arguments of the preceding section. The following key claim CpK,Ωq (essentially “Fact
12” from [9]), defined for any K ¥ 3 and Ω � rKs, will play a crucial role in the
argument.

Claim 6.1 (CpK,Ωq). Let

1 Î L Î
1

ε
.

Let S � Z have upper Banach density at least 1 � ε, and let c : S Ñ C be a colouring
of S by some finite set C of colours. Then there exists a “perfect” colour p P C, and

a family p~P~lq~lPrLsΩ of K-APs ~P~l parameterised by tuples ~l � plkqkPΩ with lk P rLs for all

k P Ω, obeying the following axioms:
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(i) For all ~l P rLsΩ, the progression ~P~l is contained in S.

(ii) If Ω is non-empty with minimal element k0, then for all ~l P rLsΩ and 1 ¤ k   k0,
P~lpkq has the perfect colour p (that is, cpP~lpkqq � p). (If Ω is empty, we omit
this conclusion.)

(iii) If k P rKs, the colour of P~lpkq only depends on those components lk1 of ~l with

k1 ¤ k. That is, if ~l,~l1 P rLsΩ with ~lk1 � ~l1k1 for all k1 P Ω X rks, then cpP~lpkqq �
cpP~l1pkqq.

(iv) If k P Ω, and one fixes all components of ~l P rLsΩ except for lk, then P~lpkq traces

out an L-AP. That is to say, if ~l1 P rLsΩztku, then there is an L-AP ~Qk,~l1 such

that Qk,~l1plkq � P~lpkq whenever ~l � plk1qk1PΩ P rLs
Ω agrees with ~l1 on Ωztku (thus

lk1 � l1k1 for all k1 P Ωztku.

The claim CpK,Hq is trivially true: indeed, if S has upper density at least 1� ε, then

from a simple counting argument it will contain an interval P � a�
ÝÝÑ
rKs, which already

gives (i), and (ii), (iii), (iv) are vacuously true in the Ω � H case. Note that the claims
Cp3, t2uq and Cp3, t3uq are essentially Theorem 1.5 and Theorem 1.6 respectively (using
the explicit choice ε � 1

10L
of ε), while Cp4, t2, 4uq is Theorem 1.7. As one may infer

from the statements of Theorems 1.5, 1.6, one should be able to make the dependence
of ε on L quite explicit (in particular, this dependence will not involve quantitative
bounds for van der Waerden’s theorem or the regularity lemma), but we will not do so
here in general. The claims CpK,Ωq will be our substitute for the crucial “Fact 12”
in [9]. Generally speaking, CpK,Ωq becomes harder to prove when the set Ω is larger
and/or contains larger numbers; see Theorem 6.6 below (together with the iteration
scheme immediately following that theorem) for a more precise statement.

It will be convenient to also use the following “bounded” variant of C 1pK,Ωq:

Claim 6.2 (C 1pK,Ωq). Let

1 Î L Î
1

ε
ÎM Î N.

Let S � rN s have cardinality |S| ¥ p1 � εqN , and let c : S Ñ rM s be a colouring of S

by M colours. Then there exists a “perfect” colour p P rM s, and a family p~P~lq~lPrLsΩ of

K-APs ~P~l parameterised by tuples ~l � plkqkPΩ with lk P rLs for all k P Ω, obeying the
conclusions (i)-(iv) of claim CpK,Ωq.

We now adapt the proof of Theorem 5.1 (or Theorem 5.2) to obtain

Lemma 6.3. For any K ¥ 3 and Ω � rKs, CpK,Ωq implies C 1pK,Ωq.

It is also easy to establish the converse implication of CpK,Ωq from C 1pK,Ωq, but we
will not need this direction here.

Proof. Suppose for contradiction that CpK,Ωq was true but C 1pK,Ωq failed. Then there
exists

1 Î L Î
1

ε
ÎM,
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a sequence Ni, i P N going to infinity, and sets Si � rNis of cardinality |Si| ¥ p1� εqNi

with M -colourings ci : Si Ñ rM s, such that the conclusions of C 1pK,Ωq do not hold
with N,S replaced by Ni,Si for any i. We may recursively find translates hi � rNis
of rNis such that the intervals hi � rNis are disjoint, and such that for any i P N, any
K-AP or L-AP that contains at least two elements in

�
i1 i hi1 � rNi1s will be disjoint

from hi�rNis; in particular, as K,L ¥ 3, any K-AP or L-AP that lies in
�
iPN hi�rNis

must in fact lie in a single one of the hi �Ni.

Now set S :�
�
iPN hi � Si, then S has upper Banach density at least 1 � ε, and any

K-AP or L-AP that lies in S in fact must lie in a single one of the hi � Si. We can
M -colour S by assigning to each hi � ni P hi � Si the colour cipniq P rM s.

Applying the claim CpK,Ωq, we can find a family p~P~lq~lPrLsΩ of K-APs ~P~l that obey the

conclusions (i)-(iv) of that claim for S. By construction of S and conclusion (i), each

of the ~P~l must lie in exactly one of the hi � Si. In principle, the index i could depend

on ~l; but by conclusion (iv), we see that i does not change if one varies just one of the

components lk of ~l holding all other components fixed, and so i is in fact independent

of ~l. If one now translates all of the ~P~l by �hi, one contradicts the claim that Si does
not obey the conclusions of C 1pK,Ωq, and the claim follows. �

Next, we observe that the claim C 1pK, tKuq can be used to prove Szemerédi’s theorem:

Proposition 6.4. Suppose that K ¥ 3 is such that C 1pK, tKuq holds. Then any set A
of integers of positive upper Banach density contains a pK � 1q-AP.

Proof. Write δ for the upper density of A along AP , thus 0   δ ¤ 1. By Theorem 3.6,
there exists an unbounded family P of arithmetic progressions with the double counting
property such that A has density δ along P .

Let

1 Î L Î
1

ε
Î H Î N 1.

As P is unbounded, it contains an N -AP ~P for some N ¥ N 1. By Proposition 3.5(i),
all but εN of the H-APs pP pn� hqqhPrHs, n P rN s lie in P . If one then defines the set

S :� tn P rN s : pP pn� hqqhPrHs P Pu,
then |S| ¥ p1 � εqN . On the other hand, we can colour S by at most 2H colours by
assigning to each element n of S the colour

th P rHs : P pn� hq P Au � rHs.

Applying the claim C 1pK, tKuq (and isolating just one ~Q of the K-APs produced by this

claim), we conclude from conclusions (i) and (ii) that there exists a K-AP ~Q contained
in S such that Qp1q, . . . , QpK � 1q all have the same colour p, thus

th P rHs : P pQp1q � hq P Au � � � � � th P rHs : P pQpK � 1q � hq P Au � p. (6.1)

Since all the H-APs pP pQpkq � hqqhPrHs, k P rKs are in P , and A has density δ ¡ 0
along P , we conclude from (3.3) that the sets in (6.1) are non-empty. Thus there exists
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h P rHs such that P pQpkq�hq P A for all k P rK�1s. Thus A contains the pK�1q-AP
pP pQpkq � hqqkPrK�1s, and the claim follows. �

Remark 6.5. By a slightly longer argument using the techniques in Section 5.3, one can
upgrade the conclusion of Proposition 6.4 by showing that A contains a K-AP rather
than a pK� 1q-AP. This leads to a slight reduction in the total length of the proof (one
needs Theorem 6.6 below about 2K�1 times, rather than 2K), and was utilised already
in the proof of Roth’s theorem. However, we do not use this shortcut here as it does
not significantly simplify the proof if Szemerédi’s theorem in full generality.

To finish the proof of Szemerédi’s theorem, it thus suffices to prove the following induc-
tive step.

Theorem 6.6 (Inductive step). Let K ¥ 3, and let Ω � rKs contain rk0s but not k0�1
for some 0 ¤ k0   K. Then C 1pK,Ωq implies CpK,Ωzrk0s Y tk0uq.

Indeed, suppose Theorem 6.6 was true. We assign to each Ω � rKs the “weight”°
kPΩ 2k�1; this gives a one-to-one correspondence between the subsets Ω of rKs and the

integers between 0 and 2K � 1 inclusive, as can be seen by binary expansion. If Ω has
weight less than 2K �1, then it contains rk0s but not k0�1 for some 0 ¤ k0   K. From
Lemma 6.3 and Theorem 6.6, we conclude that CpK,Ωq implies CpK,Ωzrk0s Y tk0uq.
Now note that the weight of Ωzrk0s Y tk0u is one more than the weight of Ω. Iterating
this observation starting with Ω � H (which has weight 0), we conclude that CpK,Ωq
is true for all Ω � rKs. Applying Proposition 6.4, we obtain Szemerédi’s theorem.

Example 6.7. If K � 3, then from Theorem 6.6 and Lemma 6.3 we obtain the chain
of implications

Cp3,Hq ùñ Cp3, t1uq ùñ Cp3, t2uq ùñ Cp3, t1, 2uq ùñ Cp3, t3uq.

As it turns out, the proof of Theorem 6.6 can be modified (and made slightly more
complicated) to obtain the variant

C 1pK,Ωzt1uq ùñ CpK,Ωzrk0s Y t1, k0uq

whenever K ¥ 3 and Ω � rKs contains rk0s but not k0 � 1 for some 1 ¤ k0   K, so one
also has the shorter chain of implications

Cp3,Hq ùñ Cp3, t2uq ùñ Cp3, t3uq.

Proposition 6.4 then shows that Cp3, t3uq implies the K � 2 case of Szemerédi’s theo-
rem; by Remark 6.5, one can in fact obtain Roth’s theorem. This essentially recovers
the argument structure of Section 5.

It remains5 to prove Theorem 6.6. A key step in the proof will be to establish the
following “counting lemma”, which will be a consequence of multiple applications of
Theorem 4.1, and which roughly corresponds to [9, Lemma 5]:

5The reader may wish, as a warmup, to try to adapt the arguments in Section 5.2 to prove the
pK,Ωq � p4, t1, 2, 4uq case of this theorem, that is to say to use C 1p4, t1, 2, 4uq to prove Cp4, t3, 4uq, as
this case is already quite typical.
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Theorem 6.8 (Counting lemma). Let K ¥ 3, and let Ω � rKs contain rk0s but not
k0 � 1 for some 0 ¤ k0   K. Let 0   ε ¤ 1, let P be an unbounded family of arithmetic
progressions with the double counting property, let S � Z be a set with a density σ along
P for some σ ¥ 1 � ε, and let A � S be a set with a density δ along P for some
0   δ ¤ 1. Let

1

ε
,
1

δ
Î

1

κ
Î L1 Î H,

let r be a natural number, and suppose that there is a family p~P~l1q~l1PrL1sΩ of K-APs ~P~l1

indexed by tuples ~l1 � pl1kqkPΩ with l1k P rL
1s for all k P Ω, obeying the following axioms:

(i) For all ~l1 P rL1sΩ and k P rKs, the H-AP ~P~l1pkq � r � rHs lies in P.

(iii) If k P rKs, the set th P rHs : ~P~l1pkq � rh P Au � rHs only depends on those

components l1k1 of ~l1 with k1 ¤ k.

(iv) If k P Ω, and one fixes all components of ~l1 except for l1k, then ~P~l1pkq traces out
an L1-AP.

Let Q denote the collection of K-APs ~Q contained in rHs, and for every k P rKs and
h P rHs, let Qkphq � Q denote the subcollection

Qkphq :� t ~Q P Q : Qpkq � hu.

Let 0 ¤ k1 ¤ k0 be an integer. Then there exist ~l� P rL1sΩ, such that for every k1 P
rKszrk1s, one has the homogeneity property

|tQ P Qk1phq : ~P~l�pkq � rQpkq P A for all k P rk1su| � δk1 |Qk1phq| �OKpκHq (6.2)

for all but OKpκHq elements h of rHs.

The intuition here is that as A has density δ along P , the “probability” that the event
~P~l�pkq � rQpkq P A occurs for a given k P rk1s should be approximately equal to δ for

“typical” choices of ~l� and Q. The idea is to use Theorem 4.1 repeatedly to then locate

a good choice of ~l� in which this intuition is correct for k � 1, . . . , k1 in turn.

Proof. We induct on k1; we will allow the implied constants in the OKpq notation to
vary with this induction, but this is harmless since k1 will only increase at most K

times. The case k1 � 0 is trivial (just choose ~l� P rL1sΩ arbitrarily), so suppose that
1 ¤ k1 ¤ k0 and that the claim has already been proven for k1 � 1. Thus, there exists
~l�� P rL1sΩ such that for every k1 P rKszrk1 � 1s, one has

|tQ P Qk1phq : P~l��pkq � rQpkq P A for all k P rk1 � 1su| � δk1�1|Qk1phq| �OKpκHq

for all but OKpκHq elements h of rHs.

For any h P rHs and k1 P rKszrk1s, let Ek1,h � rHs denote the set

Ek1,h :� tQpk1q : Q P Qk1phq;P~l��pkq � rQpkq P A for all k P rk1 � 1su, (6.3)

thus we have
|Ek1,h| � δk1�1|Qk1phq| �OKpκHq (6.4)
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for all but OKpκHq elements h of rHs.

For l1 P rL1s, let ~l�,l
1

be the element of rL1sΩ formed from ~l�� by replacing the k1

coordinate with l1. By the hypothesis (iv) of Theorem 6.8, the tuple

pP~l�,l1 pk1qql1PrL1s

is an L1-AP, and hence the tuple

pP~l�,l1 pk1q � rhqpl1,hqPrL1s�rHs

is an L1�H-rectangle. By the hypothesis (i) of Theorem 6.8, all the L1 columns of this
rectangle lie in P . By Theorem 4.1(iii), we may thus find l1 P rL1s such that

|Ek1,h X th : P~l�,l1 pk1q � rh P Au| � δ|Ek1,h| �OpκHq

for all but at most κH of the tuples pk1, hq P prKszrk1sq � rHs. By (6.4), we thus have
that for any k1 P rKszrk1s, one has

|Ek1,h X th : P~l�,l1 pk1q � rh P Au| � δi1 |Qk1phq| �OKpκHq

for all but OKpκHq elements h of rHs. By (6.3), the left-hand side may be written as

|tQ P Qk1phq : P~l�,l1 pkq � rQpkq P A for all k P rk0su|.

Setting ~l� :� ~l�,l
1

, we obtain the claim. �

To conclude the proof of Theorem 6.6 (and hence Szemerédi’s theorem), we now show
the following implication, which is a variant of [9, Lemma 6].

Proposition 6.9. Theorem 6.8 implies Theorem 6.6.

Proof. This will be a double counting argument (in the spirit of the proof of Theorem
1.5), relying primarily on the fact that the density of S is at least 1�ε for a fairly small
value of ε to eliminate the contribution of those k-APs which are not fully contained in
S. A key technical difficulty will be the appearance (via (6.2)) of the quantity δ, which
will probably be much smaller than ε; however, all the factors of δ will safely cancel
each other out in the final analysis.

We turn to the details. Let K ¥ 3, and let Ω � rKs contain rk0s but not k0 � 1 for
some 0 ¤ k0   K, and suppose that C 1pK,Ωq holds. Let

1 Î L Î
1

ε
,

let S � Z be a set of upper Banach density at least 1 � ε, and suppose that one has a
finite colouring c : S Ñ C of S. Let σ denote the upper density of S along AP , then
σ ¥ 1 � ε. By Corollary 3.7, there exists an unbounded family P � AP of arithmetic
progressions with the double counting property and a “perfect” colour p P C, such that
S has density σ along P , and the colour class A :� ts P S : cpsq � pu has a positive
density δ ¡ 0 along P .
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Now select parameters

1

ε
,
1

δ
, |C| Î

1

κ
! L1 Î

1

ε1
Î H Î N 1.

As P is unbounded, it contains an N -AP U � a � r �
ÝÝÑ
rN s for some N ¥ N 1, integer a,

and natural number r. By Proposition 3.5(i), all but ε1N of the H-APs

pUpn� hqqhPrHs � Upnq � r �
ÝÝÑ
rHs

for n P rN s lie in P . If one then defines the set

S1 :� tn P rN s : Upnq � r �
ÝÝÑ
rHs P Pu,

then S1 is a subset of rN s with |S1| ¥ p1� ε1qN . On the other hand, we can colour S1 by
at most p|C| � 1qH colours by assigning to each n P S1 the colour c1pnq P pC Y tKuqH ,
defined as the tuple

c1pnq :� pcpUpnq � rhqqhPrHs,

where we extend c outside of S by setting cpnq �K for all n R S and some symbol K
outside of C. Applying the hypothesis C 1pK,Ωq (with L, ε,S, c replaced by L1, ε1,S1, c1

respectively), and discarding the conclusion (ii) of that claim (which is the only conclu-

sion involving the perfect colour), we obtain a family p~P 1
~l1
q~l1PrL1sΩ of K-APs ~P 1

~l1
obeying

the following axioms:

(i) For all ~l1 P rL1sΩ, the progression ~P 1
~l1

is contained in S1.

(iii) If k P rKs, the tuple
�
cpUp~P 1

~l1
pkqq � rhq

	
hPrHs

only depends on those components

l1k1 of ~l1 � pl1k1qk1PΩ with k1 ¤ k.

(iv) If k P Ω, and one fixes all components of ~l1 � pl1k1qk1PΩ except for l1k1 , then ~P 1
~l1
pkq

traces out an L1-AP.

We then define the K-AP ~P~l1 for each ~l1 P rL1sΩ by composing the two increasing affine-
linear maps P 1

~l1
: ZÑ Z and U : ZÑ Z:

~P~l1 :�
�
UpP 1

~l1
pkqq

�
kPrKs

.

We then see that the p~P~l1q~l1PrL1sΩ obey the axioms (i), (iii), (iv) of Theorem 6.8. In fact

we have a stronger claim than (iii):

(iii’) If k P rKs, the tuple pcpP~l1pkq � rhqqhPrHs only depends on those components l1k1

of ~l1 � pl1k1qk1PΩ with k1 ¤ k.

Note that (iii’) implies (iii), since P~l1pkq � rh P A if and only if cpP~l1pkq � rhq � p.

Applying Theorem 6.8 with k1 � k0, there exists ~l� � pl�kqkPΩ P rL1sΩ, such that for
every k1 P rKszrk0s, one has the homogeneity property�� Q P Qk1phq : P~l�pkq � rQpkq P A for all k P rk0s

(�� � δk0 |Qk1phq| �OKpκHq (6.5)

for all but OKpκHq elements h of rHs.
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Let L denote the set of all ~l1 � pl1kqkPΩ P rL1sΩ such that l1k � l�k for all k P rk0s, and
l1k P rLs for k P Ωzrk0s (note carefully here that we are restricting l1k here to the short
interval rLs rather than the long interval rL1s). Clearly

|L| ¤ LK . (6.6)

Let Q1 denote the collection of k-APs ~Q P Q such that P~l�pkq � rQpkq P A for all k P

rk0s. Call a K-AP ~Q P Q1 good if one has

P~l1pk
1q � rQpk1q P S for all k1 P rKszrk0s and ~l1 P L,

and bad otherwise. Clearly, the number of bad ~Q is at most¸
~l1PL

¸
k1PrKszrk0s

¸
hPrHs:P~l1 pk

1q�rhRS

|Q1 XQk1phq|.

From (3.3) applied to the H-AP P~l1pk
1q � r � rHs, which is in P , we have

|th P rHs : P~l1pk
1q � rh P Su| ¥ p1� 2εqH,

thus the inner sum in the above expression is over OpεHq elements h. From (6.5) and
the trivial bound |Qi1phq| ¤ H, we have |Q1 X Qk1phq| � Opδk0Hq for all but OKpκHq
elements h of rHs. This implies that¸

hPrHs:P~l1 pk
1q�rhRS

|Q1 XQk1phq| � Opεδk0H2q

and hence the number of bad ~Q is at most OK,Lpεδ
k0H2q.

Let rHs� :� th P rHs : H{3 ¤ h ¤ 2H{3u denote the middle third of rHs. For h P rHs�,
the cardinality |Qk0�1phq| is at least H

3K
. From (6.5), we conclude that

|Q1 XQk0�1phq| ¥ δk0
H

4K

(say) for all but OKpκHq elements h of rHs�. Comparing this against the number of

bad ~Q, we conclude that the number of h P rHs� such that all elements of Q1XQk0�1phq
are bad cannot exceed Ok,LpεHq; crucially, all the factors of δ have been cancelled

out. This is significantly less than |rHs�|
L

, so we conclude that rHs� contains an interval

h0 � rLs with the property that for each h0 � l P h0 � rLs, there is a good K-AP ~Ql in
Q1 XQk0�1ph0 � lq.

Now we can prove CpK,Ωzrk0s Y tk0 � 1uq. For ~l � plkqkPΩzrk0sYtk0�1u P rLs
Ωzrk0sYtk0�1u,

we define ~P~l to be the K-AP

~P~l :� pP~lpkq � rQh0�lk0�1
pkqqkPrKs, (6.7)

where ~l P rL1sΩ has the same coordinates as ~l on Ωzrk0s, and the same coordinates as ~l�

on rk0s.

It is clear that the ~P~l are K-APs. To finish the proof of CpK,Ωzrk0sYtk0�1uq, we need

to verify the axioms (i)-(iv) (with ~P~l replaced by ~P~l, and Ω replaced by Ωzrk0sYtk0�1u).
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We first verify (i). Since Qh0�lk0�1
lies in Q1, we have

P~l�pkq � rQh0�lk0�1
pkq P A � S

for all k P rk0s; as ~l and ~l� agree on the first rk0s coordinates, we conclude from the
hypothesis (iii) of Theorem 6.8 that

~P~lpkq � P~lpkq � rQh0�lk0�1
pkq P A � S (6.8)

for all k P rk0s. For k1 P rKszrk0s, we use the fact that Qh0�lk0�1
is good and that ~l P L

to conclude that

~P~lpk
1q � P~lpk

1q � rQh0�lk0�1
pk1q P S.

This proves (i).

The claim (ii) follows from (6.8), so we turn to (iii). Let k P rKs, and suppose that
~l � plk1qk1PΩzrk0sYtk0�1u and ~l1 � pl1k1qk1PΩzrk0sYtk0�1u are elements of rLsΩzrk0sYtk0�1u such
that lk1 � l1k1 for all k1 P ΩX rks. We wish to show that

cp~P~lpkqq � cp~P~l1pkqq. (6.9)

If k P rk0s then this follows from claim (ii) (or (6.8)), so we may assume that k P rkszrk0s.
In particular we have lk0�1 � l1k0�1, and hence

Qh0�lk0�1
pkq � Qh0�l1k0�1

pkq. (6.10)

On the other hand, if we define ~l1 P L similarly to ~l (but with ~l replaced by ~l1), we

see from construction that ~l1 and ~l agree in all coordinates less than or equal to k, and
hence by the property (iii’) we have

pcpP~lpkq � rhqqhPrHs � pcpP~l1pkq � rhqqhPrHs.

From this, (6.10), and (6.7) we obtain (6.9) as required.

Finally, we verify (iv). We need to show that for all k P Ωzrk0s Y tk0 � 1u, the quantity
~P~lpkq depends in an increasing affine-linear fashion on the coordinate lk of ~l, if all other

components of ~l are held fixed. For k � k0 � 1 this is immediate from the definition
(6.7), and for k ¡ k0� 1, the claim follows from the property (iv) of Theorem 6.8. This
concludes the proof. �

Appendix A. Proof of weak regularity lemma

In this appendix we prove Lemma 1.3. Our main tool will be the singular value decom-
position. We follow the arguments laid out in terrytao.wordpress.com/2012/12/03.

Let V,W, ε,E be as in that lemma. Without loss of generality we may assume that
V � rV s and W � rW s for some natural numbers V,W (the case when V or W empty
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being trivial). Applying the singular value decomposition to the adjacency matrix
p1Epv, wqqvPrV s,wPrW s, one can obtain a decomposition

1Epv, wq �
ņ

i�1

λifipvqgipwq (A.1)

for all v P rV s, w P rW s and some finite sequence λ1 ¥ � � � ¥ λn ¥ 0 of singular values,
some singular functions f1, . . . , fn : rV s Ñ R that are orthonormal in the sense that

1
|V |

°
vPrV s fipvqfjpvq � 1i�j for all i, j P rns, and some singular functions g1, . . . , gn :

rW s Ñ R that are orthonormal in the sense that 1
|W |

°
wPrW s gipwqgjpwq � 1i�j for all

i, j P rns.

Squaring both sides of (A.1) and averaging in v, w, we obtain the Frobenius norm
identity

1

VW

¸
vPrV s

¸
wPrW s

1Epv, wq
2 �

ņ

i�1

λ2
i .

The left-hand side is clearly bounded by 1, hence
ņ

i�1

λ2
i ¤ 1. (A.2)

In particular, since the λi are decreasing, we have

λi ¤
ε

4

whenever i ¥ 16{ε2.

Now suppose that i is such that λi ¡ ε{4. Multiplying (A.1) by gipwq and averaging in
w, we conclude that

1

W

¸
wPrW s

1Epv, wqgipwq � λifipvq

for all v P V . Since 1
W

°
wPrW s gipwq

2 � 1, we see from the Cauchy-Schwarz inequality

that the left-hand side is at most 1 in magnitude. As we are assuming λi ¡ ε{4, we
conclude the pointwise bound

|fipvq|  
4

ε
for all v P rV s. Similarly we have

|gipwq|  
4

ε
for all w P rW s.

By subdividing the interval p�4
ε
, 4
ε
q into at most 128

ε3
intervals of length at most ε2

16
, we

see that for each i with λi ¡ ε{4, we can partition rV s into at most 128
ε3

sets, such that the
function fipvq only fluctuates by at most ε2{16 on each set. As there are at most 16{ε2

such i, by combining all these partitions together we see that we can find a partition
rV s � V1 Y � � � YVA into non-empty sets for some A ¤ p128{ε3q16{ε2 such that for each
a P rAs and each i with λi ¡ ε{4, fi fluctuates by at most ε2{16 on Va. Similarly, we

can partition rW s � W1 Y � � � Y WB into non-empty sets for some B ¤ p128{ε3q16{ε2
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such that for each b P rBs and each i with λi ¡ ε{4, gi fluctuates by at most ε2{16 on
Wb.

For each a P rAs and b P rBs, define the density

da,b :�
1

|Va|

1

|Wb|

¸
vPVa

¸
wPWb

1Epa, bq,

thus the function pv, wq ÞÑ 1Epv, wq � da,b has mean zero on Va �Wb. Clearly we have
0 ¤ da,b ¤ 1 for all a P rAs and b P rBs.

Now let F � rV s and W � rW s. The expression

|pF�Gq X E| �
¸
aPrAs

¸
bPrBs

da,b|FXVa||GXWb|

appearing in (1.1) may be written as¸
aPrAs

¸
bPrBs

¸
vPVa

¸
wPWb

1Fpvq1Gpwqp1Epv, wq � da,bq. (A.3)

Writing

αa :�
1

|Va|

¸
vPVa

1Fpvq

and

βb :�
1

|Wb|

¸
wPWb

1Gpvq

for the means of 1F and 1G on Va and Wb respectively, we may decompose

1Fpvq1Gpwq � p1Fpvq � αaq1Gpwq � αap1Gpwq � βbq � αaβb.

The third term makes no contribution to (A.3) since pv, wq ÞÑ 1Epv, wq � da,b has mean
zero. Thus, by the triangle inequality, the left hand side of (1.1) is bounded by the sum
of ������

¸
aPrAs

¸
bPrBs

¸
vPVa

¸
wPWb

p1Fpvq � αaq1Gpwqp1Epv, wq � da,bq

������ (A.4)

and ������
¸
aPrAs

¸
bPrBs

¸
vPVa

¸
wPWb

αap1Gpwq � βbqp1Epv, wq � da,bq

������ . (A.5)

We first estimate (A.4). Since 1Fpvq�αa has mean zero, we may remove the da,b factor
and write this as ������

¸
aPrAs

¸
bPrBs

¸
vPVa

¸
wPWb

p1Fpvq � αaq1Gpwq1Epv, wq

������ .
This can in turn be rewritten as

|
¸
vPrV s

¸
wPrW s

F pvqGpwq1Epv, wq|
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where F pvq :�
°
aPrAsp1Fpvq � αaq1Vapvq and Gpwq :� 1Gpwq. Using the singular value

decomposition (A.1), this can be written in turn as

|
ņ

i�1

λip
¸
vPrV s

F pvqfipvqqp
¸

wPrW s

Gpwqgipwqq|.

From Bessel’s inequality (and the observation that F is bounded in magnitude by 1)
one has

ņ

i�1

������
1

V

¸
vPrV s

F pvqfipvq

������
2

¤ 1

and similarly

ņ

i�1

������
1

W

¸
gPrW s

Gpwqgipwq

������
2

¤ 1.

From the Cauchy-Schwarz inequality, we conclude that������
¸

i:λi¤ε{4

λip
¸
vPrV s

F pvqfipvqqp
¸

wPrW s

Gpwqgipwqq

������ ¤
ε

4
|V ||W |.

On the other hand, if λi ¡ ε{4, then by construction fipvq fluctuates by at most ε2

16
on

each Va, while F pvq has mean zero and is bounded in magnitude by 1 on each Va. This
implies that

|
¸
vPrV s

F pvqfipvq| ¤
ε2

16
|V |

for each such i; meanwhile, from Cauchy-Schwarz one has

|
¸

wPrW s

Gpwqgipwq| ¤ |W |.

Finally, from (A.2) one has ¸
i:λi¡ε{4

λi  
4

ε

and thus
|

¸
i:λi¡ε{4

λip
¸
vPrV s

F pvqfipvqqp
¸

wPrW s

Gpwqgipwqq| ¤
ε

4
|V ||W |.

Thus the expression (A.4) does not exceed ε
2
|V ||W |. A similar argument applies for

(A.5), and the claim follows.

References

[1] A. Frieze, K. Kannan, The regularity lemma and approximation schemes for dense problems, 37th
Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), 12–20, IEEE
Comput. Soc. Press, Los Alamitos, CA, 1996.

[2] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic
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