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The Riemann zeta function ζ(s) is defined in the half-plane
{Re(s) > 1} by the formula

ζ(s) :=
∞∑

n=1

1
ns .

Because of the fundamental theorem of arithmetic, as well as
the geometric series formula(

1− 1
ps

)−1

= 1 +
1
ps +

1
p2s +

1
p3s + . . . ,

one has the Euler product formula

ζ(s) =
∏

p

(
1− 1

ps

)−1

where the product is over primes. This links the zeta function to
analytic number theory. The Euler product formula also shows
that ζ(s) 6= 0 whenever Re(s) > 1.

Terence Tao Vaporizing and freezing the Riemann zeta function



Riemann also introduced the Riemann xi function

ξ(s) :=
s(s − 1)

2
π−s/2Γ(

s
2

)ζ(s),

where Γ is the gamma function

Γ(s) :=

∫ ∞
0

e−t ts dt
t
.

Initially, the xi function is only well defined in the region
{Re(s) > 1}. However, one can manipulate the formula for ξ(s)
in such a way that it extends to the whole complex plane as
follows.
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ξ(s) :=
s(s − 1)

2
π−s/2Γ(

s
2

)ζ(s).

Using the standard formula sΓ(s) = Γ(s + 1) and some algebra,
we have

s(s − 1)

2
Γ(

s
2

) = 2Γ(
s + 4

2
)− 3Γ(

s + 2
2

)

and hence

ξ(s) =
∞∑

n=1

2π−s/2n−s
∫ ∞

0
e−t t

s+4
2

dt
t
−3π−s/2n−s

∫ ∞
0

e−t t
s+2

2
dt
t
.

Dilating t by πn2, we can write this as

ξ(s) =
∞∑

n=1

2π2n4
∫ ∞

0
e−πn2t t

s+4
2

dt
t
− 3πn2

∫ ∞
0

e−πn2t t
s+2

2
dt
t
.
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ξ(s) =
∞∑

n=1

2π2n4
∫ ∞

0
e−πn2t t

s+4
2

dt
t
− 3πn2

∫ ∞
0

e−πn2t t
s+2

2
dt
t
.

We make the change of variables t = e4u and use Fubini’s
theorem to arrive at the Fourier-Laplace representation

ξ(s) = 4
∫

R
Φ(u) exp(2su) du

where Φ is a relative of the theta function:

Φ(u) :=
∞∑

n=1

(2π2n4e9u − 3πn2e5u) exp(−πn2e4u).

Making the renormalisation

H0(z) :=
1
8
ξ(

1 + iz
2

)

we then have the Fourier representation

H0(z) =
1
2

∫
R

Φ(u) exp(izu) du.
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It is clear that the function

Φ(u) =
∞∑

n=1

(2π2n4e9u − 3πn2e5u) exp(−πn2e4u).

decays super-exponentially fast as u → +∞. From the Poisson
summation formula one can obtain the functional equation

Φ(−u) = Φ(u),

and so one can now extend

H0(z) =
1
2

∫
R

Φ(u) exp(izu) du

to the entire complex plane.
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What do we know about H0?
It is an entire function (of order 1), obeying the functional
equations H0(−z) = H0(z) and H0(z) = H0(z). Thus, the
zeroes of H0 are symmetric around the real and imaginary
axes.
All the zeroes of H0 are contained in the strip
{x + iy : |y | < 1}.
Riemann hypothesis: All the zeroes of H0 are real.
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Riemann-von Mangoldt formula: For T ≥ 2, the number
N0(T ) of zeroes in the rectangle
{x + iy : 0 ≤ x ≤ T ; |y | ≤ 1} is T

4π log T
4π −

T
4π + O(log T ).

(Proven using upper and lower bounds on H0 outside of the
strip {x + iy : |y | < 1}, and upper bounds inside the strip.)
A variant (due to Littlewood): If the Riemann hypothesis is
true, then for any fixed α, one has
N0(T + α)− N0(T ) = α log T + o(log T ) as T →∞.
In particular, on RH, the mean spacing between zeroes of
H0 in [T ,2T ] is roughly 1

log T , and one has equidistribution
of the zeroes at scales ≥ η(T ) for some η(T ) = o(1).
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We have the Riemann-Siegel approximation (or approximate
functional equation), which says that in the regime where
y = O(1) and x � 1, one has

H0(x + iy) ≈ π2
√

8
e−πx/8×(

eiα+N
7+y

2

N∑
n=1

1

n
1+y−ix

2

+ eiα−N
7−y

2

N∑
n=1

1

n
1−y+ix

2

)
where N := b

√
x

2π c and α+, α− are the phases

α+ := −x
4

log
x

4π
+

x
4

+
9− y

8
π

α− :=
x
4

log
x

4π
− x

4
− 9 + y

8
π.

In fact there are explicit formulae and good upper bounds on
the error term in this approximation, making it well suited for
numerics. The Riemann-Siegel approximation can be
established by clever use of the residue theorem.
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Informally, one can think of the zeroes of H0 as living in one of
three “states of matter”:

Gaseous state: the zeroes lie off of the real line.
Liquid state: the zeroes lie on the real line, but are not
close to being evenly spaced.
Solid state: the zeroes lie on the real line, and are close to
being evenly spaced.

The Riemann hypothesis can be viewed as an assertion that H0
purely exists in the liquid and solid states, and never in the
gaseous state.
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There are some number-theoretic results which assert, roughly
speaking, that H0 is asymptotically not in the solid state (in
contrast to, say, trigonometric functions or Bessel functions).
For instance, in 1985, Conrey, Ghosh, Goldston, Gonek, and
Heath-Brown showed (assuming the Riemann hypothesis) that
a positive proportion of gaps xn+1 − xn between zeroes are less
than 71% of the average spacing at that scale (which is 1+o(1)

log xn
).

The GUE hypothesis in fact predicts that the zeta function is
“highly liquid”: normalised gaps (xn+1 − xn) log xn should be
asymptotically distributed according to the Gaudin distribution,
which allows for arbitrarily large or arbitrarily small normalised
gaps.
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In 1950, de Bruijn investigated what happens when one
deforms the (renormalised) Riemann xi function

H0(z) =
1
2

∫
R

Φ(u) exp(izu) du

in time to create the new functions

Ht (z) =
1
2

∫
R

etu2
Φ(u) exp(izu) du

for all t ∈ R. These functions obey the backwards heat equation

∂tHt (z) = −∂zzHt (z).

It can be helpful to think of the functions Ht as being
increasingly “frozen” as time increases, or increasingly
“vaporising” as time decreases. We say that the Riemann
hypothesis holds at time t if Ht has all real zeroes. Of course
we are most interested in this when t = 0!
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Like H0, the functions Ht continue to be entire and obey the
functional equations Ht (−z) = Ht (z) and Ht (z) = Ht (z).
However, it no longer has an Euler product.
It follows from classical results of Pólya that if the Riemann
hypothesis holds at some time t0, then it holds at all later times
t > t0.
De Bruijn obtained the following improvement: if at time t0 the
zeroes of Ht0 are contained in a horizontal strip
{x + iy : |y | ≤ y0}, then at all later times t > t0, they will be
contained in a narrower strip {x + iy : |y | ≤

(
y2

0 − 2(t − t0)
)1/2
+
}.

In particular, for the Riemann hypothesis will hold at time
t ≥ t0 +

y2
0
2 . The zeroes get attracted to the real axis as the

Riemann xi function “freezes”!
Applying this with t0 = 0 and y0 = 1, de Bruijn concluded that
the Riemann hypothesis was true for all times t ≥ 1

2 .
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One can explain this attraction to the real axis from an ODE
perspective.
From tools such as the Hadamard factorisation theorem, one
essentially has a product expansion of the form

Ht (z) ∝
∏

k

(z − zk (t))

where zk (t) are the zeroes of Ht , and one has to suitably
renormalise the infinite product. Inserting this into the
backwards heat equation, one eventually obtains the system of
ordinary differential equations

∂tzk (t) = 2
∑
j 6=k

1
zk (t)− zj(t)

.

Informally: zeroes that are horizontally separated will repel
each other, while zeroes that are vertically separated will attract
each other. De Bruijn’s theorem can then be explained by
observing that any complex zero of Ht is attracted to its
complex conjugate.
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In 1976, Newman showed that the Riemann hypothesis failed
for sufficiently large negative t . Combining this with de Bruijn’s
results, we conclude that there exists a real number
−∞ < Λ ≤ 1

2 , now called the de Bruijn-Newman constant, such
that the Riemann hypothesis at time t is true if and only if t ≥ t0.
The classical Riemann hypothesis is then equivalent to the
assertion Λ ≤ 0. Newman then made the opposite conjecture
Λ ≥ 0; intuitively, if the (classical) Riemann hypothesis is true,
then it is only “barely so”: any deformation of the Riemann xi
function backwards in time destroys the Riemann hypothesis.
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Known upper bounds on Λ:
Λ ≤ 1

2 (de Bruijn, 1950)

Λ < 1
2 (Ki, Kim, Lee, 2009)

Λ ≤ 0.22 (Polymath15, 2018)
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Known lower bounds on Λ:
Λ > −∞ (Newman, 1950)
Λ ≥ −50 (Csordas-Norfolk-Varga, 1988)
Λ ≥ −5 (te Riele, 1991)
Λ ≥ −0.385 (Norfolk-Ruttan-Varga, 1992)
Λ ≥ −0.0991 (Csordas-Ruttan-Varga, 1991)
Λ ≥ −4.379× 10−6 (Csordas-Smith-Varga, 1994)
Λ ≥ −5.895× 10−9 (Csordas-Odlyzko-Smith-Varga, 1993)
Λ ≥ −2.63× 10−9 (Odlyzko, 2000)
Λ ≥ −1.15× 10−11 (Saouter-Gourdon-Demichel, 2011)
Λ ≥ 0 (Rodgers-T., 2018)
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Previous lower bounds on Λ proceeded, roughly speaking, by
running the law of motion of zeroes

∂tzk (t) = 2
∑
j 6=k

1
zk (t)− zj(t)

backwards in time, so that zeroes on the real line now attract
each other instead of repelling.
One then numerically locates a Lehmer pair - two zeroes of H0
that are unusually close to each other. Going backwards in
time, these zeroes quickly collide and then bounce off into the
complex plane, “vaporising” this portion of the function from the
liquid state to the gaseous state.
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The method of proof of Newman’s conjecture Λ ≥ 0 proceeds,
roughly speaking, as follows.

Assume for contradiction that Λ < 0, in particular the
Riemann hypothesis is true at times −Λ ≤ t ≤ 0. Thus Ht
is liquid or solid at these times.
Show that for any ε > 0, the asymptotic time to relaxation
to equilibrium is less than ε: if Ht0 is asymptotically liquid or
solid, then Ht0+ε is asymptotically solid.
From the results of Conrey, Ghosh, Goldston, Gonek, and
Heath-Brown mentioned earlier, H0 is not asymptotically
solid.
Setting t0 = Λ and ε = −Λ, we obtain a contradiction.
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The equilibrium states for the ODE

∂tzk (t) = 2
∑
j 6=k

1
zk (t)− zj(t)

occur when the zk are arranged in an infinite arithmetic
progression; at the level of the backwards heat equation, this
corresponds to equilibrium solutions such as
Ht (z) = C cos(ωz + θ), whose zeroes are a fixed arithmetic
progression of spacing π

ω .
The main difficulty is then to rigorously establish asymptotic
local convergence to equilibrium in arbitrarily small time scales.

Terence Tao Vaporizing and freezing the Riemann zeta function



The approach was inspired by recent analogous local
convergence to equilibrium results in random matrix theory by
Erdős, Schlein, and Yau. It is based on exploiting the
monotonicity and convexity properties of the entropy functional

H(t) :=
∑
j 6=k

log
1

|zk (t)− zj(t)|
.

Formally, the zeroes zk (t) evolve by the gradient flow for this
functional, and the functional is formally decreasing and convex
in time, suggesting convergence to equilibrium.
Unfortunately, this functional is actually infinite, but one can
work with suitable truncations and renormalisations of this
functional.
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In order to keep the time to relaxation under ε, it was necessary
to prove a generalisation of the Riemann-von Mangoldt formula:
for any −Λ ≤ t ≤ 0 and T � 1, the number Nt (T ) of zeroes
Ht (x + iy) = 0 with 0 ≤ x ≤ T is equal to
T
4π log T

4π −
T
4π + O(log2 T ), and for any α > 0, we have the

variant Nt (T + α log T )− Nt (T ) = α log2 T + o(log2 T ).
The bounds here are worse than those for N0 because the
Euler product is no longer available to bound Ht away from zero.
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Now we turn to the problem of upper bounding Λ.
The first step is to generalise the Riemann-Siegel
approximation

H0(x + iy) ≈ π2
√

8
e−πx/8×(

eiα+N
7+y

2

N∑
n=1

1

n
1+y−ix

2

+ eiα−N
7−y

2

N∑
n=1

1

n
1−y+ix

2

)
.
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Using a lot of contour shifting (the saddle point method), we
obtained the generalised Riemann-Siegel approximation

Ht (x + iy) ≈ π2
√

8
e−πx/8 exp(

t
16

(log2 x
4π
− π2

4
))×

(
N∑

n=1

eiα+(t)N
7+y

2
1

n
1+y−ix

2 + t
4 log N2

n −
πit
8

+ eiα−(t)N
7−y

2
1

n
1−y+ix

2 + t
4 log N2

n +πit
8

)
for 0 ≤ t � 1, y = O(1), x � 1, where

α+ := −x
4

log
x

4π
+

x
4

+
9− y

8
π +

t
32

log
x

4π

α− :=
x
4

log
x

4π
− x

4
− 9 + y

8
π +

t
32

log
x

4π
.
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For large x (x ≥ exp(C/t)), the approximation “freezes” to

Ht (x + iy) ≈ π2
√

8
e−πx/8 exp(

t
16

(log2 x
4π
− π2

4
))×

(
eiα+(t)N

7+y
2 + eiα−(t)N

7−y
2

)
.

In particular, the zeroes “solidify” to the real axis, close to the
set where α+(t)− α−(t) is a multiple of π, and the Riemann
hypothesis is provably true in this region. For smaller x
(x < exp(C/t)), one could still have “liquid” or “gaseous”
behavior. But this is just a finite region that can be checked
numerically for a given value of t !
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For fixed values of t (e.g. t = 0.22), the remaining numerical
calculation is still somewhat prohibitive. We were able to take a
numerical shortcut by exploiting the existing extensive work on
numerical verification of the Riemann hypothesis, which
ensures that all zeroes of H0 up to a very large value of x lie on
the real line. The main difficulty is then to erect a numerically
verifiable “barrier” that ensures that as time increases, no
zeroes of large imaginary part enter this region. This is done by
use of the argument principle.
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Thanks for listening!
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