1. A Sobolev inequality

Lemma 1.1. Let $ABCD$ be a parallelogram, and let u be a C^2 function on $ABCD$. Let α be the angle subtended by A. Then

$$|u(A) - u(B) + u(C) - u(D)| \leq \frac{1}{\sin(\alpha)} \int_{ABCD} |\nabla^2 u|.$$

Proof. We may normalise $A = 0$, so that $C = B + D$. From two applications of the fundamental theorem of calculus one has

$$\int_0^1 \int_0^1 \partial_{st} u(sB + tD) = u(A) - u(B) + u(C) - u(D).$$

The left-hand side can be rewritten as

$$\frac{1}{|ABCD|} \int_{ABCD} (B \cdot \nabla)(D \cdot \nabla)u.$$

Since

$$|ABCD| = |B||D|\sin(\alpha)$$

the claim follows. \hfill \Box

Lemma 1.2. Let ABC be a triangle with angles α, β, γ, and let u be a C^2 function on ABC that obeys the Neumann boundary condition $n \cdot \nabla u = 0$ on the boundary of ABC. Then for any $P \in ABC$, one has

$$|u(P) - u(Q)| \leq \frac{1}{3\min(\sin(\alpha), \sin(\beta), \sin(\gamma))} \int_{ABC} |\nabla^2 u|.$$

Proof. Let $P \in ABC$. Let $D, E \in AB, F, G \in BC, H, I \in AC$ be the points such that $ADXI, BFXE, CHXG$ are parallelograms (thus D, G are the intersections with AB, BC respectively of the line through X parallel to AC, and so forth. Then from the preceding lemma one has

$$|u(X) + u(A) - u(D) - u(I)| \leq \frac{1}{\sin(\alpha)} \int_{ADXI} |\nabla^2 u|$$

$$|u(X) + u(B) - u(F) - u(E)| \leq \frac{1}{\sin(\beta)} \int_{BFXE} |\nabla^2 u|$$

$$|u(X) + u(C) - u(H) - u(G)| \leq \frac{1}{\sin(\gamma)} \int_{CHXG} |\nabla^2 u|.$$
Also, by reflecting the triangles DEX, FGX, XHI across the Neumann boundary and using the previous lemma, we see that

\[
|u(X) + u(X) - u(D) - u(E)| \leq \frac{2}{\sin(\gamma)} \int_{DEX} |\nabla^2 u|
\]

\[
|u(X) + u(X) - u(F) - u(G)| \leq \frac{2}{\sin(\alpha)} \int_{FGX} |\nabla^2 u|
\]

\[
|u(X) + u(X) - u(H) - u(I)| \leq \frac{2}{\sin(\beta)} \int_{XHI} |\nabla^2 u|.
\]

Summing the latter three combinations of u and subtracting the former three using the triangle inequality, we conclude that

\[
|3u(X) - u(A) - u(B) - u(C)| \leq \frac{2}{\min(\sin(\alpha), \sin(\beta), \sin(\gamma))} \int_{ABC} |\nabla^2 u|.
\]

A similar inequality holds with X replaced by Y. Subtracting the two inequalities, we obtain the claim.

Corollary 1.3. Let ABC be a triangle with angles α, β, γ, and let u be a C^2 function on ABC which is smooth up to the boundary except possibly at the vertices A, B, C, and which obeys the Neumann boundary condition $n \cdot \nabla u = 0$ on the boundary of ABC, and has mean zero on ABC. Then

\[
\|u\|_{L^\infty(ABC)} \leq \frac{4}{3 \min(\sin(\alpha), \sin(\beta), \sin(\gamma))} |ABC|^{1/2} \|\Delta u\|_{L^2(ABC)}.
\]

Proof. If u has mean zero, then $\|u\|_{L^\infty(ABC)}$ is bounded by $|u(P) - u(Q)|$ for some $P, Q \in ABC$. From the previous lemma we thus have

\[
\|u\|_{L^\infty(ABC)} \leq \frac{4}{3 \min(\sin(\alpha), \sin(\beta), \sin(\gamma))} |ABC|^{1/2} \|\nabla^2 u\|_{L^2(ABC)}.
\]

It will thus suffice to show the Bochner-Weitzenbock identity

\[
\int_{ABC} |\nabla^2 u|^2 = \int_{ABC} |\Delta u|^2.
\]

But this can be accomplished by two integration by parts, using the smoothness and Neumann boundary hypotheses on u (and a regularisation argument if necessary to cut away from the vertices) *more details needed here.*

2. **Schwarz-Christoffel**

Let $0 < \alpha, \beta, \gamma < \pi$ be angles adding up to π, then we can define a Schwarz-Christoffel map $\Phi_{\alpha,\beta} : \mathbb{H} \to ABC$ from the half-plane $\mathbb{H} := \{z : \Im(z) > 0\}$ to a triangle ABC with angles α, β, γ by the formula

\[
\Phi_{\alpha,\beta}(z) := \int_0^z \frac{d\zeta}{\zeta^{1-\alpha/\pi} (1 - \zeta)^{1-\beta/\pi}}.
\]
where the integral is over any contour from 0 to \(z \) in \(\mathbb{H} \), and one chooses the branch cut to make both factors in the denominator positive real on the interval \([0, 1]\). Thus the vertices of the triangle are given by

\[
A := \Phi_{\alpha, \beta}(0) = 0
\]

\[
B := \Phi_{\alpha, \beta}(1) = \int_0^1 \frac{dt}{t^{1-\alpha/\pi}(1-t)^{1-\beta/\pi}} = \frac{\Gamma((\alpha/\pi)\Gamma((\beta/\pi))}{\Gamma((\alpha + \beta)/\pi)}
\]

\[
C := \Phi_{\alpha, \beta}(\infty) = -e^{i\alpha} \int_{-\infty}^0 \frac{dt}{|t|^{1-\alpha/\pi}(1-t)^{1-\beta/\pi}}
\]

\[
= e^{i\alpha} \int_1^\infty \frac{ds}{(s-1)^{1-\alpha/\pi}s^{1-\beta/\pi}}
\]

\[
= e^{i\alpha} \int_0^1 \frac{dv}{(v-1)^{1-\alpha/\pi}v^{1-\gamma/\pi}}
\]

\[
= e^{i\alpha} \frac{\Gamma((\alpha/\pi)\Gamma((\gamma/\pi))}{\Gamma((\alpha + \gamma)/\pi)}
\]

where we have used the beta function identity

\[
\int_0^1 \frac{dt}{t^{1-x}(1-t)^{1-y}} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
\]

and the changes of variable \(s = 1 - t, v = 1/s \). In particular, the area of the triangle \(ABC \) can be expressed as

\[
|ABC| = \frac{1}{2} |B||C| \sin(\alpha) = \frac{\Gamma((\alpha/\pi)\Gamma((\beta/\pi)\Gamma((\gamma/\pi))}{2\Gamma((\alpha + \beta)/\pi)\Gamma((\alpha + \gamma)/\pi)} \sin(\alpha)
\]

which can be simplified using the formula \(\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin(\pi z)} \) as the more symmetric expression

\[
|ABC| = \frac{1}{2\pi^2} \Gamma((\alpha/\pi)^2\Gamma((\beta/\pi)\Gamma((\gamma/\pi)^2 \sin(\alpha) \sin(\beta) \sin(\gamma)). \quad (2.1)
\]

We write

\[
|\Phi'_{\alpha, \beta}(z)| = e^{\omega(z)}
\]

where \(\omega = \omega_{\alpha, \beta} \) is the harmonic function

\[
\omega(z) := \left(\frac{\alpha}{\pi} - 1 \right) \log |z| + \left(\frac{\beta}{\pi} - 1 \right) \log |1 - z|. \quad (2.2)
\]

If \(u : ABC \to \mathbb{R} \) is a smooth function, and \(\tilde{u} : \mathbb{H} \to \mathbb{R} \) is its pullback to the half-plane \(\mathbb{H} \) defined by

\[
\tilde{u} := u \circ \Phi_{\alpha, \beta}
\]

then we have

\[
\int_{ABC} u = \int_{\mathbb{H}} e^{2\omega} \tilde{u}.
\]
In a similar vein we have the conformal invariance of the two-dimensional Dirichlet energy

\[\int_{ABC} |\nabla u|^2 = \int_{\mathbb{H}} |\nabla \tilde{u}|^2 \]

and the conformal transformation of the Laplacian:

\[\Delta \tilde{u}(z) = e^{2\omega} \Delta u. \]

In particular, the Rayleigh quotient

\[\frac{\int_{ABC} |\nabla u|^2}{\int_{ABC} |u|^2} \]

with mean zero condition \(\int_{ABC} u = 0 \) becomes, when pulled back to \(\mathbb{H} \), the Rayleigh quotient

\[\frac{\int_{\mathbb{H}} |\nabla \tilde{u}|^2}{\int_{\mathbb{H}} e^{2\omega} |\tilde{u}|^2} \]

with mean zero condition \(\int_{\mathbb{H}} e^{2\omega} \tilde{u} = 0 \).

Let \(u_2, u_3, \ldots \) be an \(L^2 \)-normalised eigenbasis for the Neumann Laplacian \(-\Delta \) on \(ABC \) with eigenvalues \(\lambda_2 \leq \lambda_3 \leq \ldots \), thus

\[-\Delta u_k = \lambda_k u_k \]
on \(ABC \) with Neumann boundary data

\[n \cdot \nabla u_k = 0 \]

and orthonormality

\[\int_{ABC} u_j u_k = \delta_{jk} \]

and mean zero condition

\[\int_{ABC} u_j = 0. \]

One can show that when \(ABC \) is acute-angled, these eigenfunctions are smooth except possibly at the vertices \(A, B, C \), and are uniformly \(C^2 \). \textbf{add details here}

Pulling all this back to \(\mathbb{H} \), we obtain transformed eigenfunctions \(\tilde{u}_2, \tilde{u}_3, \ldots \) on \(\mathbb{H} \) to the conformal eigenfunction equation

\[-\Delta \tilde{u}_k = \lambda_k e^{2\omega} \tilde{u}_k \] \hspace{1cm} (2.3)
on \(\mathbb{H} \) with Neumann boundary data

\[n \cdot \nabla \tilde{u}_k = 0 \] \hspace{1cm} (2.4)
and orthonormality

\[\int_{\mathbb{H}} e^{2\omega} \tilde{u}_j \tilde{u}_k = \delta_{jk} \] \hspace{1cm} (2.5)
and mean zero condition

\[\int_{\mathbb{H}} e^{2\omega} \tilde{u}_j = 0. \] \hspace{1cm} (2.6)
Now suppose that we vary the angle parameters α, β, γ smoothly with respect to some time parameter t, thus also varying the triangles ABC, eigenfunctions u_k and transformed eigenfunctions \tilde{u}_k, eigenvalues λ_k, and conformal factor ω. We will use dots to indicate time differentiation, thus for instance $\dot{\alpha} = \frac{d}{dt}\alpha$. Let us formally suppose that all of the above data vary smoothly (or at least C^1) in time we will eventually need to justify this, of course. Since $\alpha + \beta + \gamma = \pi$, we have

$$\dot{\alpha} + \dot{\beta} + \dot{\gamma} = 0.$$

The variation $\dot{\omega}$ of the conformal factor is explicitly computable from (2.2) as being a logarithmic weight:

$$\dot{\omega} = \frac{\dot{\alpha}}{\pi} \log |z| + \frac{\dot{\beta}}{\pi} \log |1 - z|.$$

Next, by (formally) differentiating (2.3) we obtain an equation for the variation $\dot{\tilde{u}}_k$ of the k^{th} eigenfunction:

$$-\Delta \dot{\tilde{u}}_k = \lambda_k e^{2\omega} \tilde{u}_k + 2\lambda_k \omega e^{2\omega} \tilde{u}_k + \lambda_k e^{2\omega} \dot{\tilde{u}}_k.$$

To solve this equation for $\dot{\tilde{u}}_k$, we observe from differentiating (2.4), (2.5), (2.6) that

$$\int_H e^{2\omega} \dot{\tilde{u}}_k = 0$$

and

$$\int_H e^{2\omega} \tilde{u}_k \dot{\tilde{u}}_k = 0$$

and

$$n \cdot \nabla \dot{\tilde{u}}_k = 0.$$

By eigenfunction expansion, we thus have

$$\dot{\tilde{u}}_k = \sum_{l \neq k} (\int_H e^{2\omega} \tilde{u}_l \dot{\tilde{u}}_k) \tilde{u}_l$$

in a suitable sense (L^2 with weight e^{ω}). Now we evaluate the expression in parentheses. Integrating (2.7) against \tilde{u}_l and using (2.5) reveals that

$$-\int_H \Delta \dot{\tilde{u}}_k \tilde{u}_l = 2\lambda_k \int_H \omega e^{2\omega} \tilde{u}_k \tilde{u}_l + \lambda_k \int_H e^{2\omega} \dot{\tilde{u}}_k \tilde{u}_l.$$

By Green’s theorem and the Neumann conditions on $\dot{\tilde{u}}_k$ and \tilde{u}_l, the left-hand side is

$$- \int_H \dot{\tilde{u}}_k \Delta \tilde{u}_l$$

which by (2.3) is equal to

$$\lambda_l \int_H e^{2\omega} \dot{\tilde{u}}_k \tilde{u}_l.$$

Inserting this into (2.10) we see that

$$\int_H e^{2\omega} \dot{\tilde{u}}_k \tilde{u}_l = \frac{2\lambda_k}{\lambda_l - \lambda_k} \int_H \omega e^{2\omega} \tilde{u}_k \tilde{u}_l$$.
and thus by (2.9)
\[\hat{u}_k = \sum_{l \neq k} \left(\frac{2\lambda_k}{\lambda_l - \lambda_k} \int_H \omega e^{2\omega} \hat{u}_k \hat{u}_l \right) \hat{u}_l. \] (2.11)

We can take Laplacians and conclude that
\[-\Delta \hat{u}_k = e^{2\omega} \sum_{l \neq k} \left(\frac{2\lambda_k\lambda_l}{\lambda_l - \lambda_k} \int_H \omega e^{2\omega} \hat{u}_k \hat{u}_l \right) \hat{u}_l. \]

Set \(k = 2 \), then \(\frac{2\lambda_k\lambda_l}{\lambda_l - \lambda_k} \) is bounded in magnitude by \(\frac{2\lambda_2\lambda_3}{\lambda_3 - \lambda_2} \). From the orthonormality (2.5) and the Bessel inequality, we conclude that
\[\left(\int_H e^{-2\omega} |\Delta \hat{u}_2|^2 \right)^{1/2} \leq \frac{2\lambda_2\lambda_3}{\lambda_3 - \lambda_2} \left(\int_H |\hat{\omega}|^2 e^{2\omega} \hat{u}_2^2 \right)^{1/2}. \]
If we change coordinates by writing
\[\hat{u} = \hat{u} \circ \Phi \]
we conclude that
\[\left(\int_{ABC} |\Delta \hat{u}_2|^2 \right)^{1/2} \leq \frac{2\lambda_2\lambda_3}{\lambda_3 - \lambda_2} \left(\int_H |\hat{\omega}|^2 e^{2\omega} \hat{u}_2^2 \right)^{1/2}. \]

Also, \(\hat{u}_2 \) has mean zero on \(ABC \) by (2.8). We conclude from Corollary 1.3 that
\[\|\hat{u}_2\|_{L^\infty} \leq \frac{4}{3 \min(\sin(\alpha), \sin(\beta), \sin(\gamma))} |ABC|^1/2 \frac{2\lambda_2\lambda_3}{\lambda_3 - \lambda_2} \left(\int_H |\hat{\omega}|^2 e^{2\omega} \hat{u}_2^2 \right)^{1/2}. \]
Pulling back to \(H \), and estimating \(\hat{u}_2 \) in \(L^\infty \) norm, we conclude that
\[\|\hat{u}_2\|_{L^\infty(H)} \leq X \|\hat{u}_2\|_{L^\infty(H)} \]
where \(X \) is the explicit (but somewhat messy) quantity
\[X := \frac{4}{3 \min(\sin(\alpha), \sin(\beta), \sin(\gamma))} |ABC|^1/2 \frac{2\lambda_2\lambda_3}{\lambda_3 - \lambda_2} \left(\int_H |\hat{\omega}|^2 e^{2\omega} \right)^{1/2}. \]
This gives stability of the second eigenfunction in \(L^\infty \) norm, as long as there is an eigenvalue gap \(\lambda_3 - \lambda_2 > 0 \).