
DETERMINISTIC METHODS TO FIND PRIMES

D.H.J. POLYMATH

Abstract. Given a large positive integer N , how quickly can one construct a prime
number larger than N (or between N and 2N)? Using probabilistic methods, one can

obtain a prime number in time at most logO(1)N with high probability by selecting
numbers between N and 2N at random and testing each one in turn for primality until
a prime is discovered. However, if one seeks a deterministic method, then the prob-
lem is much more difficult, unless one assumes some unproven conjectures in number
theory; brute force methods give a O(N1+o(1)) algorithm, and the best unconditional
algorithm, due to Odlyzko, has a runtime of O(N1/2+o(1)).

In this paper we discuss an approach that may improve upon the O(N1/2+o(1))
bound, by suggesting a strategy to determine in time O(N1/2−c) for some c > 0
whether a given interval in [N, 2N] contains a prime. While this strategy has not been
fully implemented, it can be used to establish partial results, such as being able to
determine the parity of the number of primes in a given interval in [N, 2N] in time
O(N1/2−c).

1. Introduction

We consider the following question: given a large integer N , how easy is it to generate
a prime number that is larger than N?

Of course, since there are infinitely many primes, and each integer can be tested for
primality in finite time, one can always answer this question in finite time, simply by
the brute force method of testing each integer larger than N in turn for primality. So the
more interesting question is to see how rapidly one can achieve this, and in particular
to see for which A = A(N) is it possible for a Turing machine (say) to produce a prime
number larger than N in at most A steps and using at most A units of memory, taking
only the integer N as input. If A is such that this task is possible, we say that a prime
number larger than N can be found “in time at most A”.

Note that if one allows probabilistic algorithms (so that the Turing machine also has
access to a random number generator for input), then one can accomplish this in time

polynomial in the length of N (i.e. in time at most1 logO(1)N); indeed, one can select
integers in [N, 2N] at random and test each one for primality. Using algorithms such

as the AKS algorithm [1], each such integer can be tested in time at most logO(1)N ,

1991 Mathematics Subject Classification. 11Y11.
1Here we use the usual asymptotic notation, thus O(X) denotes a quantity bounded in magnitude

by CX where C is independent of N , and o(1) denotes a quantity bounded in magnitude by c(N) for
some c(N) going to zero as N →∞.

1

2 D.H.J. POLYMATH

and by the prime number theorem one has about a 1/ logN chance of success with each

attempt, so the algorithm will succeed with (say) 99% certainty after at most logO(1)N
units of time.

If however one insists on deterministic methods, then the problem becomes substantially
harder. The sieve of Eratosthenes will supply all the primes between N and 2N , but
requires O(N1+o(1)) units of time and memory. Using the AKS algorithm, if one can
construct a subset E of [N, 2N] in time at most A that is guaranteed to contain at
least one prime, then by testing each element of E in turn for primality, we see that
we can obtain a prime in time at most A + O(N o(1)|E|). Thus, for instance, using
Bertrand’s postulate one recovers the O(N1+o(1)) bound; using the unconditional fact
that [N,N + N0.525] contains a prime for every large N (see [2]) we improve this to
O(N0.525+o(1)); and if one assumes the Riemann hypothesis, then as is well known we
obtain a prime in an interval of the form [N,N +N0.5+o(1)] for all large N , leading to a
bound of O(N0.5+o(1)).

There are other sparse sets that are known to contain primes. For instance, using the
result of Heath-Brown [7] that there are infinitely many primes of the form a3 + 2b3

(which comes with the expected asymptotic), the above strategy gives an unconditional
algorithm with time O(N2/3+o(1)), since the number of integers in [N, 2N] of the form
a3 + 2b3 is comparable to N2/3. More generally, if one assumes Schinzel’s hypothesis
H, which predicts the asymptotic number of primes inside any polynomial sequence
{P (n) : n ∈ N}, and in particular inside the sequence nk + 1 for any fixed k = 1, 2, . . .,
then the same argument would give a deterministic prime-finding algorithm that runs
in time O(N1/k+o(1)). Unfortunately the asymptotic for primes of the form nk + 1 is not
known even for k = 2, which is a famous open conjecture of Landau.

A famous conjecture of Cramér [4] (see also [6] for refinements) asserts that the largest
prime gap in [N, 2N] is of the order of O(log2N), which would give a deterministic

algorithm with run time O(logO(1)N). Unfortunately, this conjecture is also well out
of reach of current technology (the best bound on prime gaps being the O(N0.525+o(1))
result from [2] mentioned earlier, or O(

√
N logN) assuming the Riemann hypothesis

[4]).

Another way to proceed is to find an efficient way to solve the following decision problem:
given a subinterval [a, b] of [N, 2N], how quickly can one decide whether such an interval
contains a prime? If one could solve each such problem in time at most A, then one
could locate a prime in [N, 2N] in time O(A logN), by starting with the interval [N, 2N]
(which is guaranteed to contain a prime, by Bertrand’s postulate) and then performing
a binary search, repeatedly subdividing the interval into two approximately equal pieces
and using the decision problem to locate a subinterval that also contains a prime.

Because primality testing is known to be in the complexity class P (see [1]), we see that
the above decision problem is in the complexity class NP . Thus, if P = NP , we could
locate a prime deterministically in time at most logO(1)N . Of course, this conjecture is
also unproven (and is widely believed to be false).

DETERMINISTIC METHODS TO FIND PRIMES 3

Given that there is a probabilistic algorithm to locate primes in time polynomial in the
digits, it may seem that the conjecture P = BPP would be able to quickly imply a
fast algorithm to locate primes. Unfortunately, to use the P = BPP conjecture, one
would presumably need to obtain a bounded-error probabilistic polynomial (BPP) time
algorithm for solving the above decision problem (or some closely related problem), and
it is not clear how to achieve this2.

One way to solve the above decision problem would be to find a quick way to compute
π(x), the number of primes less than or equal to x, for x in [N, 2N], since an interval [a, b]
contains a prime if and only if π(b)−π(a−1) > 0. The fastest known elementary method
to compute π(x) is the Meissel-Lehmer method [8], [5], which takes time O(x2/3/ log2 x)
and leads to a O(N2/3+o(1)) algorithm.

On the other hand, if one can calculate π(x) for x ∈ [N, 2N] approximately in time A to
a guaranteed error of L (say), then a modification of the above arguments shows that
in time O(N o(1)A), one can find a subinterval of [N, 2N] of length O(N o(1)L). (The
only thing one has to be careful of is to ensure in the binary search algorithm that the
density of primes in the interval is always � 1/ logN , but this is easily accomplished.)
It was observed by Lagarias and Odlyzko [9] that by using an explicit contour integral
formula for π(x) (or the closely related expression ψ(x) =

∑
n≤x Λ(n)) in terms of the

Riemann zeta function, one could compute π(x) to accuracy L using O(N o(1)N
L

) time3.

This is enough to obtain an interval of length O(N1/2+o(1)) that is guaranteed to contain
a prime, in time O(N1/2+o(1)); testing each such element for primality, one then obtains
a deterministic prime-finding algorithm that unconditionally takes O(N1/2+o(1)) time
(thus matching the algorithm that was conditional on the Riemann hypothesis). To
our knowledge, this is the best known algorithm in the literature for deterministically
finding primes.

1.1. Beating the square root barrier? We conjecture that the square root barrier
for the decision problem can be broken:

Conjecture 1.1. There exists an absolute constant c > 0, such that one can (deter-
ministically) decide whether a given interval [a, b] in [N, 2N] of length at most N1/2+c

contains a prime in time O(N1/2−c+o(1)).

This would of course imply a bound of O(N1/2−c+o(1)) for finding a prime in [N, 2N]
deterministically, since as mentioned earlier we can locate an initial interval of length
at most N1/2+c containing a prime in time O(N1/2−c+o(1)), and then proceed by binary
search.

2For further discussion of this issue, see
michaelnielsen.org/polymath1/index.php?title=Oracle counterexample to finding pseudoprimes

.
3The basic idea is to use quadrature to integrate a suitable contour integral involving the zeta

function on the interval from 2 − iT to 2 + iT , where T is comparable to No(1)N
L . In [9] it is also

observed that the method also lets one compute π(x) exactly in time O(N1/2+o(1)), by smoothing
the sum ψ(x) at scale O(N1/2+o(1)) and using the sieve of Eratosthenes to compute exactly the error
incurred by such a smoothing.

4 D.H.J. POLYMATH

As mentioned earlier, it would suffice to be able to compute π(x) in time O(x1/2−c+o(1)).
We do not know how to accomplish this, but we have the following partial result:

Theorem 1.2 (Computing the parity of π(x)). There exists an absolute constant c > 0,
such that one can (deterministically) decide whether a given interval [a, b] in [N, 2N] of
length at most N1/2+c contains an odd number of primes in time O(N1/2−c+o(1)).

We prove this result in Section 2; the key observation is that the parity of the prime
counting function π(x) is closely connected to the divisor sum function

∑
n≤x τ(n), which

will be computed efficiently by invoking the standard Dirichlet hyperbola identity∑
n≤x

∑
d|n

f(d)g(
n

d
) =

∑
n,m:nm≤x

f(n)g(m)

=
∑
n≤y

g(n)F (
x

n
) +

∑
m≤x/y

f(m)G(
x

m
)− F (y)G(x/y)

(1.1)

for any functions f, g : N→ R, where F (x) :=
∑

n≤x f(n) and G(x) :=
∑

m≤x g(m); see
for instance [12, §3.2, Theorem 1].

Note that once one has Theorem 1.2, and assuming that one can find an interval [a, b]
which contains an odd number of primes, then the binary search method will locate
a prime deterministically in time O(N1/2−c+o(1)), since if one subdivides an interval
containing an odd number of primes into two subintervals, then at least one of these
must also contain an odd number of primes. However, we do not know of a method to
quickly and deterministically locate an interval with an odd number of primes.

In fact we can establish the following stronger result. Given an interval [a, b], we define
the prime polynomial P (t) = Pa,b(t) as

Pa,b(t) :=
∑
a≤p≤b

tp,

where p ranges over primes in [a, b]. Thus for instance [a, b] contains a prime if and only
if P (1) is non-zero, or equivalently if P (t) mod 2 is non-zero, where we view P (t) mod 2
as an element of the polynomial ring F2[t] over the field F2 of two elements.

Given a polynomial P (t) over a ring R, we say that P has circuit complexity O(M)
if, after time O(M), one can build a circuit of size O(M) consisting of the arithmetic
operations (addition, subtraction, multiplication, and division4), as well as the primitive
polynomials 1, t, whose output is well-defined in R[t] and is equal to P .

Theorem 1.3. Suppose that [a, b] is an interval in [N, 2N] of size at most N1/2+c for
some sufficiently small c. Then the polynomial Pa,b(t) mod 2 has circuit complexity
O(N1/2−c+o(1)).

4Traditionally, division is not considered an arithmetic operation for the purpose of circuit complex-
ity, but it is convenient for us to modify the definition because we will be taking advantage of division
at a few places in the paper. Also note that in our definition, it is not enough for a circuit to merely
exist; it must also be constructible within the specified amount of time.

DETERMINISTIC METHODS TO FIND PRIMES 5

We prove this theorem in Section 3.

Observe that if g ∈ F2[t] is a polynomial of degree at most N c/2+o(1), then any arith-
metic operation in the quotient space F2[t]/(g) can be performed in time O(N c/2+o(1))
(using the fast multiplication algorithm to evaluate multiplication in this space, and
Euler’s theorem and the power method to perform multiplicative inversion). As a con-
sequence of this and the above theorem, we see that Pa,b(t) mod (2, g) can be computed
in time O(N1/2−c/2+o(1)). When g(t) = t − 1, this is Theorem 1.2. But this theorem is
more general. For instance, applying the above argument with g equal to a cyclotomic
polynomial, it is not difficult to see that one can compute the parity of the reduced
prime counting functions π(x; a, q) := |{p ≤ x : p ≡ a mod q}| for any positive integer
q = O(N c/10) in time O(N1/2−c/4+o(1)). Unfortunately, we were not able to use this to
unconditionally establish Conjecture 1.1; it is a priori conceivable (but quite unlikely)
that an interval [a, b] might contain a non-zero number of primes, but have an even
number of primes in every residue class mod q with q = O(N c/10).

On the other hand, as the prime polynomial Pa,b(t) mod 2 has degree O(N), it is easy
to see that the proportion of polynomials of degree at most N c/4 that do not divide
Pa,b(t) mod 2 is bounded away from zero. (Indeed, a positive proportion of such poly-
nomials contain a prime factor of degree at least N c/8, but by unique factorization, there
are O(N) such primes, and each one only divides at most 2−N

c/8
of the polynomials of

degree at most N c/4.) As such, we see that we can obtain a bounded-error probabilistic
algorithm for solving the decision problem that runs in time O(N1/2−c/2+o(1)), by testing
whether the prime polynomial Pa,b(t) vanishes modulo 2 and g(t), where g is a randomly
selected polynomial of degree at most N c/4. Unfortunately, the run time of this algo-
rithm is not polynomial in the number of digits, and so the P = BPP hypothesis does
not yield any improvements over existing algorithms.

In Section 4 we discuss possible strategies that could lead to a full resolution of Con-
jecture 1.1.

1.2. About this project. This paper is part of the Polymath project, which was
launched by Timothy Gowers in February 2009 as an experiment to see if research math-
ematics could be conducted by a massive online collaboration. This project (which was
administered by Terence Tao) is the fourth project in this series. Further information on
this project can be found on the web site [10]. Information about this specific polymath
project may be found at

michaelnielsen.org/polymath1/index.php?title=Finding primes

and a full list of participants and their grant acknowledgments may be found at
michaelnielsen.org/polymath1/index.php?title=Polymath4 grant acknowledgments

We thank Ryan Williams for corrections, and the anonymous referee for many cogent
suggestions and corrections.

6 D.H.J. POLYMATH

2. Computing the parity of π(x)

We now prove Theorem 1.2. Let c > 0 be a small number to be chosen later. Let
τ(n) :=

∑
d|n 1 be the number of divisors of n, and let ω(n) :=

∑
p|n 1 be the number of

distinct primes that divide n (with the convention that ω(1) = 0). One easily verifies
the identity

2ω(n) =
∑
d:d2|n

µ(d)τ(n/d2) (2.1)

where µ is the Möbius function5, by checking this first on prime powers and then using
multiplicativity. Now for n > 1, 2ω(n) is divisible by 4, except when n is a prime power
n = pj, in which case it is equal to 2. This gives the identity∑

a≤n≤b

2ω(n) ≡ 2
∞∑
j=1

|{p ∈ [a1/j, b1/j] : p prime}| mod 4.

Clearly we may restrict j to size O(logN). For any j ≥ 2, the interval [a1/j, b1/j] has
size O(N c) (by the mean value theorem), and so the jth summand on the RHS can be
computed in time O(N c+o(1)) by the AKS algorithm [1]. Thus we see that to prove
Theorem 1.2, it will suffice to compute the quantity∑

a≤n≤b

2ω(n)

in time O(N1/2−c+o(1)). Using (2.1), we can expand this expression as∑
d

µ(d)
∑

a/d2≤m≤b/d2
τ(m). (2.2)

Clearly d can be restricted to be O(N1/2).

We first dispose of the large values of d in which d > N0.49 (say). Then m = O(N0.02),
so we can rearrange this portion of (2.2) as∑

m=O(N0.02)

∑
√
a/m≤d≤

√
b/m;d≥N0.49

µ(d)τ(m). (2.3)

For each value of m, there are O(N c) possible values of d, each of size O(N1/2). Each
such d can be factored using trial division in time O(N1/4+o(1)) (or one can use more
advanced factoring algorithms if desired), and so each of the O(N0.02+c) summands
can be computed in time O(N1/4+o(1)), giving a net cost of O(N0.27+c+o(1)) which is
acceptable for c small enough.

For the remaining values of d, we can use the sieve of Erathosthenes to factorise all
the d (and in particular, compute µ(d)) in time O(N0.49+o(1)). So the main task is to
compute the inner sum of (2.2) for such d.

5The Möbius function is defined by setting µ(p1 . . . pk) := (−1)k for any product p1 . . . pk of distinct
primes p1, . . . , pk, and µ(n) = 0 whenever n is not square-free (i.e. it is divisible by a perfect square
larger than 1).

DETERMINISTIC METHODS TO FIND PRIMES 7

We will shortly establish

Theorem 2.1. The expression
∑

n≤x τ(n) can be computed in time O(x1/2−c0+o(1)) for
some absolute constant c0 > 0.

Assuming this for the moment, we see that for each d ≤ N0.49, the summand in (2.2) can
be computed in time O(N o(1)(N/d2)1/2−c0). Summing in d, we obtain a total time cost
of O(N1/2−c0/10+o(1)) (say), which is acceptable if c is chosen small enough depending
on c0.

So it suffices to establish Theorem 2.1. The argument here is loosely inspired by the
arguments used to establish the elementary bound

∑
n≤x τ(n) = x log x − (2γ − 1)x +

O(x1/3+o(1)) in [13, Chapter 3].

Clearly we may shift x to be a non-integer. We then apply the Dirichlet hyperbola
identity (1.1) (with f = g = 1 and y =

√
x) to expand∑

n≤x

τ(n) = 2
∑
n≤
√
x

⌊x
n

⌋
− b
√
xc2.

It thus suffices to evaluate the integer ∑
n≤
√
x

⌊x
n

⌋
in time O(x1/2−c0+o(1)). In fact, we have

Proposition 2.2 (Complexity of the hyperbola). In time O(x0.49+o(1)), one can obtain
a partition of the discrete interval {n : 1 ≤ n ≤

√
x} into O(x0.49+o(1)) arithmetic

progressions, with the function n 7→
⌊
x
n

⌋
linear on each arithmetic progression.

Since one can use explicit formulas to sum any linear function with coefficients of size
O(x) on an arithmetic progression of integers of size O(x) in time O(xo(1)), Theorem
2.1 now follows immediately from the above proposition.

Proof. By using the singleton sets {n} to partition all the numbers less than x0.49, we
see that it suffices to partition the interval {n : x0.49 ≤ n ≤

√
x}.

Let x0.49 ≤ n0 ≤
√
x be arbitrary, and set Q := x0.1. By the Dirichlet approximation

theorem, there exist integers 1 ≤ q ≤ Q and a ≥ 1 such that | x
n2
0
− a

q
| ≤ 1

qQ
. These

integers can be easily located in time O(xo(1)) using continued fractions. We now expand
the quantity x

n
where n = n0 + lq + r, l ≥ 0, and 0 ≤ r < q. Since

1

n0 + y
=

1

n0

− y

n2
0

+
y2

n2
0(n0 + y)

for any y, we have
x

n
=

x

n0

− x(lq + r)

n2
0

+
x(lq + r)2

n2
0(n0 + y)

.

8 D.H.J. POLYMATH

We expand x
n2
0

= a
q

+ θ
qQ

for some explicitly computable |θ| ≤ 1, to obtain

x

n
=

x

n0

− al − θl

Q
− xr

n2
0

+
x(lq + r)2

n2
0(n0 + lq + r)

.

We thus have ⌊x
n

⌋
= −al + bP (l)c

where P = Px,n0,a,q,θ,r is the rational function

P (l) :=
x

n0

− xr

n2
0

− θl

Q
+

x(lq + r)2

n2
0(n0 + lq + r)

.

The first two terms on the right-hand side are independent of l. If we restrict l to the
range 0 ≤ l ≤ Q, then the third term has magnitude at most 1, and the fourth term
has magnitude at most

O(
xQ4

n3
0

) = O(x−0.01).

Thus (for x large enough) we see that P fluctuates in an interval of length at most 3,
and so bP (l)c takes at most three values. For any such value k, the set {l : bP (l)c = k}
is a union of intervals, bounded by the sets {l : P (l) = k} and {l : P (l) = k + 1}. As P
is a rational function in l of bounded degree, we see from Bezout’s theorem that these
latter sets have cardinality O(1), and so the set {l : bP (l)c = k} is the union of O(1)
intervals. Furthermore, the endpoints of these intervals can be computed explicitly in
time O(xo(1)), by using the explicit formula for the solution of the cubic. We conclude
that in time O(xo(1)), one can partition each arithmetic progression {n0+lq+r : 0 ≤ l ≤
Q} for 0 ≤ r < q into O(1) subprogressions, with n 7→ bx

n
c linear on each subprogression.

Performing this once for each residue class r mod q, we see that in time O(xo(1)q), we
can partition the interval {n : n0 ≤ n < n0 + qQ} into O(q) progressions, with n 7→

⌊
x
n

⌋
linear on each progression. If we apply this observation with n0 set equal to the left
endpoint of the interval {n : x0.49 ≤ n ≤

√
x}, we may partition an initial segment

of this interval into progressions with the required linearity property. Removing this
initial segment, and iterating this procedure (updating n0 and q at each stage) we then
obtain the claim. (Note that if the interval {n : n0 ≤ n < n0 + qQ} overflows beyond√
x, then we may simply partition the remaining portion of the interval into singletons,

at a cost of O(x0.2) progressions.) �

2.1. A refinement. By modifying the above argument, one can in fact compute
∑

n≤x τ(n)

in O(x1/3+o(1)) time, though this particular argument does not extend as easily to the
polynomial setting as the one given above. We sketch the details as follows. As before,
it suffices to compute ∑

n≤
√
x

⌊x
n

⌋
in time O(x1/3+o(1)). By dyadically decomposing the interval {n : n ≤

√
x} into dyadic

intervals {x : A ≤ n < 2A} for various values of A, it suffices to compute∑
A≤n<2A

⌊x
n

⌋

DETERMINISTIC METHODS TO FIND PRIMES 9

in time O(x1/3+o(1)) for all A ≤
√
x. We may assume that A > 100x1/3 since one can

sum the series one term at a time otherwise.

We consider the subtask of computing a partial sum of the form∑
n0≤n<n0+q

⌊x
n

⌋
where A ≤ n0 < 2A and q is chosen so that |x/n2

0− a/q| ≤ 1/qQ with 1 ≤ q ≤ Q and a
coprime to q as above, where we now optimise Q to equal Ax−1/3. We claim that this
sum can be computed in O(xo(1)) time.

As this sum is an integer, it suffices to compute the sum with an error of less than 1/2.
The sum ∑

n0≤n<n0+q

x

n

can be computed with error at most 0.1 (say) by quadrature in O(xo(1)) time, so it
suffices to compute ∑

n0≤n<n0+q

{x
n

}
.

Writing n = n0 + r and x/n2
0 = a/q + θ/qQ and expanding as before we have

x

n
=

x

n0

− ar

q
− θr

qQ
+

xr2

n2
0(n0 + r)

and thus (for 0 ≤ r < q)

x

n
=

x

n0

− ar

q
+O

(
1

q

)
where we have used the assumptions q ≤ Q = Ax−1/3.

As r runs from 0 to q− 1, the fractional parts of ar
q

take each of the values 0
q
, 1
q
, . . . , q−1

q

exactly once, since a is coprime to q. We conclude that{x
n

}
=

{
x

n0

− ar

q

}
for all but O(1) values of r, each of which can be computed explicitly in O(xo(1)) time.
So we are left with computing∑

0≤r<q

{
x

n0

− ar

q

}
=
∑
0≤i<q

{
x

n0

− i

q

}
which can easily be computed in O(xo(1)) time, and the claim follows.

A modification of the above argument shows that we can in fact compute
∑

n0≤n<n0+kq

⌊
x
n

⌋
in O(xo(1)) time whenever kq = O(Q). As such, we can compute the entire sum∑

A≤n<2A

⌊
x
n

⌋
in time O(xo(1)A/Q) = O(x1/3+o(1)) by summing in blocks of size Q,

and the claim follows.

10 D.H.J. POLYMATH

3. The circuit complexity of the prime polynomial mod 2

We now modify the above arguments to establish Theorem 1.3. We begin by showing a
non-trivial gain in circuit complexity for a quadratic sum.

Lemma 3.1. Let a, b, c, q = O(N) be integers, then the expression

q−1∑
m=0

tam
2+bm+c (3.1)

has circuit complexity O(N o(1)q1−c0) in the polynomial ring Z[t] for some absolute con-
stant c0 > 0.

Note that this is a power saving over the trivial bound of O(N o(1)q) (note that by re-
peated squaring, any monomial tn with n = O(NO(1)) has circuit complexity O(N o(1))).

Proof. It suffices to establish this lemma when q is a perfect cube q = Q3, as the general
case can then be established by approximating q by the nearest cube and evaluating
the remaining O(q1/3) terms by hand.

Next, we expand m in base Q as m = i + Qj + Q2k for 0 ≤ i, j, k < Q. We can then
expand am2 + bm+ c as a quadratic polynomial in i, j, k, which we split as

am2 + bm+ c = U(i, j) + V (j, k) +W (k, i)

for some explicit quadratic polynomials U, V,W , whose coefficients have polynomial size
in N . We can then express (3.1) as

Q−1∑
i=0

Q−1∑
j=0

Q−1∑
k=0

tU(i,j)tV (j,k)tW (k,i)

or more compactly as
tr(ABC)

where A,B,C are the Q×Q matrices

A := (tU(i,j))0≤i,j<Q; B := (tV (i,j))0≤j,k<Q; C := (tW (k,i))0≤k,i<Q.

Each of the matrices A,B,C has a circuit complexity of O(N o(1)Q2). Using the Strassen
fast matrix multiplication algorithm [11], one can multiply A,B,C together using a
circuit of complexity O(Q3−c0) for some absolute constant c0 > 0. Taking the trace
requires another circuit of complexity O(Q). Putting all these circuits together and
recalling that Q = q1/3, one obtains the claim. �

It would be of interest to see if similar power savings can also be obtained for analogous
sums in which the quadratic exponent an2 + bn + c is replaced by a higher degree
polynomial. It may be that a generalisation of the Strassen algorithm to tensors would
be relevant for this task.

Next, we need the following modification of Proposition 2.2.

DETERMINISTIC METHODS TO FIND PRIMES 11

Proposition 3.2 (Complexity of the hyperbola, II). There exists an absolute constant
c0 > 0 such that if 0 < c < c0 is sufficiently small, then for any 0 < x′ < x with
x − x′ ≤ x1/2+c, and in time O(x1/2−c0+o(1)), one can obtain a partition of the discrete
interval {n : x1/2−c ≤ n ≤

√
x} into O(x1/2−c0+o(1)) arithmetic progressions, with the

function n 7→ bx
n
c linear on each arithmetic progression, and the function n 7→ bx

n
c−bx′

n
c

is constant.

Proof. Let c0 > 0 be a sufficiently small constant, and assume that 0 < c < c0 is
sufficiently small as well. Let x1/2−c ≤ n ≤

√
x be arbitrary, and set Q := x10c0 . As

in the proof of Proposition 2.2, there exist integers 1 ≤ q ≤ Q and a ≥ 1 such that
x
n2
0

= a
q
+ θ

qQ
for some |θ| ≤ 1, where n = n0+lq+r and 0 ≤ l, q, r ≤ Q. Since n ≥ x1/2−c,

we have (for x large enough) that n0 ≥ x1/2−c/2 (say). A brief computation (noting
that |x−x′| ≤ x1/2+c) then shows that x′

n2
0

= a
q

+ θ′

qQ
for some |θ′| ≤ 2 if c is small enough

and x is sufficiently large. The claim then follows by repeating the proof of Proposition
2.2 (the main difference being that the rational function P is now replaced by a pair
P, P ′ of rational functions). �

We now combine Lemma 3.1 and Proposition 3.2 to obtain

Corollary 3.3. If c > 0 is sufficiently small, then for any 0 < a < b < N with
b− a ≤ N1/2+c, the polynomial ∑

a<n≤b

τ(n)tn

has circuit complexity O(N1/2−c+o(1)) for some absolute constant c > 0.

Proof. This is analogous to Theorem 2.1. We let c > 0 be a sufficiently small quantity
to be chosen later.

We may assume that a, b are not integers. We expand this polynomial as∑
n,m≥1:a<nm≤b

tnm.

Observe that if a < nm ≤ b, then one either has 1 ≤ n ≤
√
b or 1 ≤ m ≤

√
b, or both,

with the last case occuring precisely when a/
√
b ≤ n ≤

√
b and a/n ≤ m ≤

√
b. In the

first case, we rewrite the condition a < nm ≤ b as a/n < m ≤ b/n; in the second case,
we rewrite that condition as a/m < n ≤ b/m. After swapping n and m in the second
case, we can rearrange the above polynomial as

2
∑

1≤n≤
√
b

∑
a/n<m≤b/n

tnm −
∑

a/
√
b≤n≤

√
b

∑
a/n≤m≤

√
b

tnm.

The second sum contains only O(N2c) terms and so can easily be verified to have a
circuit complexity of O(N2c+o(1)), which is acceptable. So it will suffice to show that
the sum ∑

1≤n≤
√
b

∑
ba/nc+1≤m≤bb/nc

tnm (3.2)

12 D.H.J. POLYMATH

has circuit complexity O(N1/2−c+o(1)).

Using the geometric series formula, the inner sum has circuit complexity O(N o(1)) for
each fixed n. This is already sufficient to dispose of the contribution of the terms in
(3.2) for which n ≤ N1/2−c, so it remains to bound the circuit complexity of∑

N1/2−c+o(1)≤n≤
√
b

∑
ba/nc+1≤m≤bb/nc

tnm.

Using Proposition 3.2 and in time O(N1/2−c0+o(1)) for some absolute constant c0 (inde-

pendent of c), we may partition {n : N1/2−c0+o(1) ≤ n ≤
√
b} into arithmetic progressions

P1, . . . , Pk with k = O(N1/2−c0+o(1)), such that bb/nc is a linear function of n on each
of these progressions, and ba/nc − bb/nc is constant. This constant is of size O(N2c).
Applying Lemma 3.1 (after first switching the order of summation), the sum∑

n∈Pj

∑
ba/nc+1≤m≤bb/nc

tnm

has a circuit complexity of O(N2c+o(1)|Pj|1−c1) for some c1 > 0, so that (3.2) has a
circuit complexity of

O(N1/2−c0+o(1)) +
k∑
j=1

O(N2c+o(1)|Pj|1−c1).

By Hölder’s inequality, one has

k∑
j=1

|Pj|1−c1 ≤ (
k∑
j=1

|Pj|)1−c1kc1 .

Since
∑k

j=1 |Pj| = O(N1/2) and k = O(N1/2−c0+o(1)), we obtain a total circuit complexity
bound of

O(N1/2−c0c1+2c+o(1))

and the claim follows if c is chosen sufficiently small. �

Now we can prove Theorem 1.3. We repeat the arguments from the previous section.
First observe that ∑

a≤n≤b

2ω(n)tn ≡ 2Pa,b(t) + 2
∞∑
j=2

∑
a1/j≤p≤b1/j

tp
j

mod 4.

Because b− a = O(N1/2+c) and b, a are comparable to N , we see from the mean value
theorem that b1/j − a1/j = O(N c) for all j ≥ 2. We thus see that the total number of
primes p in the latter sum are O(N c+o(1)) on the right-hand side, and so this sum has
a circuit complexity of O(N c+o(1)). Thus it suffices to show that the polynomial∑

a≤n≤b

2ω(n)tn mod 4

DETERMINISTIC METHODS TO FIND PRIMES 13

has circuit complexity O(N1/2−c+o(1)). Using (2.1), we rewrite this polynomial as∑
d

µ(d)
∑

a/d2≤m≤b/d2
τ(m)td

2m. (3.3)

Clearly d can be restricted to be O(N1/2).

Once again, we first dispose of the large values of d in which d > N0.49. This portion of
(3.3) can be rearranged as∑

m=O(N0.02)

∑
√
a/m≤d≤

√
b/m;d≥N0.49

µ(d)τ(m)tdm.

Repeating the arguments from the previous section (and specifically, the arguments
used to compute (2.3)), this term can be given a circuit complexity of O(N0.27+c+o(1)).

For the remaining values of d, we again use the sieve of Erathosthenes to compute
all the µ(d) in time O(N0.49+o(1)). Using Lemma 3.3, each instance of the inner sum∑

a/d2≤m≤b/d2 τ(m)td
2m has a circuit complexity of O((N/d2)1/2−c0+o(1)) for some abso-

lute constant c0 > 0. Summing in d as before, we obtain a total circuit complexity
of

O(N0.49+o(1) +
∑

d≤N0.49

O((N/d2)1/2−c0+o(1))

which sums to O(N1/2−c+o(1)) as desired, for c small enough.

4. Possible extensions

The circuit complexity bound on the prime polynomial Pa,b(t) given by Theorem 1.3
lets us compute Pa,b(t) mod (2, g) in time O(N1/2−c/2+o(1)) for any polynomial g ∈ F2[t]
of degree O(N c/4), if c > 0 is sufficiently small. Unfortunately, this is not strong enough
to deterministically determine in time O(N1/2−c/2+o(1)) whether Pa,b(t) is non-trivial
or not, although as mentioned in the introduction it at least gives a bounded-error
probabilistic test in this amount of time. It may be however that by using additional
algorithms (such as the Fast Fourier Transform, or the multipoint polynomial evaluation
algorithm of Borodin and Moenk[3]) one may be able to compute quantities such as
Pa,b(t) mod (2, g) for multiple values of g simultaneously in O(N1/2−c/2+o(1)) time, or
perhaps variants such as Pa,b(t

j) mod (2, g). However, it is a priori conceivable (though
very unlikely) that the degree O(N) polynomial Pa,b(t) mod 2 is divisible by as many
as O(N1−c/4) irreducible polynomials g ∈ F2[t] of degree O(N c/4), so it is not yet clear
to us how to use this sort of test to deterministically settle the decision problem in
O(N1/2−c+o(1)) time. One possibility would be to find a relatively small set of g for
which it was not possible for Pa,b(t) mod 2 to be simultaneously divisible by, without
vanishing entirely. Note that a somewhat similar idea is at the heart of the AKS
primality test [1].

If one could compute π(x) mod q (or π(b) − π(a) mod q) for each prime 1 ≤ q ≤
O(logN) in time O(N1/2−c+o(1)) uniformly in q, where x, a, b = O(N), then from

14 D.H.J. POLYMATH

the Chinese remainder theorem we could compute π(x) or π(b) − π(a) itself in time
O(N1/2−c+o(1)), thus solving Conjecture 1.1. The above analysis achieves this goal for
q = 2. However, the methods deteriorate extremely rapidly in q. For instance, if one
wished to compute π(x) mod 3 by the above methods, one would soon be faced with
understanding the sum ∑

n<x

τ2(n) =
∑

a,b,c≥1:abc≤x

1

where x = O(N) and τ2(n) :=
∑

a,b,c:abc=n 1 is the second divisor function. (Observe

that the expression
∑

d:d3|n µ(d)τ2(n/d
3) is divisible by 9 unless n is equal to a 1 or a

power of a prime.) The three-dimensional analogue of the Dirichlet hyperbola method
allows one to evaluate this expression in time O(N2/3+o(1)). The type of arguments used
in the previous sections would reduce cost this slightly to O(N2/3−c+o(1)) for some small
c > 0 but this is inferior to the bound O(N1/2+o(1)) that can already be obtained for
π(x).

We have not attempted to optimise the exponent savings c > 0 appearing in the results
of this paper. It may be that improvements to these exponents may be obtained by
making more accurate approximations of the discrete hyperbola {(n, bx

n
c) : 1 ≤ n ≤

√
x}

than the piecewise linear approximation given by Lemma 2.2; for instance, piecewise
polynomial approximations may ultimately be more efficient.

It may also be of interest to obtain circuit complexity bounds for more general expres-
sions than the prime polynomial

∑
a≤p≤b t

p; for instance one could consider
∑

a≤p≤b t
p2

or more generally
∑

a≤p≤b t
h(p) for some fixed polynomial h.

Some progress along the above lines will appear in forthcoming work of Croot, Hollis,
and Lowry (in preparation).

References

[1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics 160 (2004), no. 2,
pp. 781-793.

[2] R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II, Proceedings of
the London Mathematical Society 83, (2001), 532-562.

[3] A. Borodin, R. Moenk, Fast Modular Transforms, Jour. of Comp. and System Sciences, 8 (1974),
366–386.

[4] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta
Arithmetica 2 (1936), 23-46.

[5] M. Deleglise, J. Rivat, Computing π(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method,
Math. Comp. Vol. 65 (1996), 235–245.

[6] A. Granville, Harald Cramér and the distribution of prime numbers, Scandinavian Actuarial Jour-
nal 1(1995), 12-28.

[7] D. R. Heath-Brown, Primes represented by x3 + 2y3. Acta Math. 186 (2001), no. 1, 1–84.
[8] J. C. Lagarias, V. S. Miller, A. M. Odlyzko, Computing π(x): The Meissel-Lehmer method, Math.

Comp. 44 (1985), 537–560.
[9] J. C. Lagarias, A. M. Odlyzko, Computing π(x): An analytic method, J. Algorithms 8 (1987),

173–191.
[10] D.H.J. Polymath, michaelnielsen.org/polymath1/index.php?title=Polymath1

DETERMINISTIC METHODS TO FIND PRIMES 15

[11] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356.
[12] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Translated from the

second French edition (1995) by C. B. Thomas. Cambridge Studies in Advanced Mathematics, 46.
Cambridge University Press, Cambridge, 1995.

[13] I. M. Vinogradov, Elements of Number Theory, Mineola, NY: Dover Publications, 2003,

http://michaelnielsen.org/polymath1/index.php

