1 Question and Setting

Write $a^X := \{x^{-1}ax \mid x \in X\}, A^{(i)}$ for l-tuples from A.

Theorem 1 (Corollary 1.2). For any k, l, m, there is a $p < 1$ and a K such that whenever G is a group, $X_0 \subseteq G^{p,k}$ finite, and $X = X_0^{-1}X_0$:

- $|X_0X| \leq k|X_0|
- \text{With probability } \geq p, \text{ an } l\text{-tuple } (a_1, \ldots, a_l) \in X^l \text{ satisfies } |a_1^X \cdots a_l^X| \geq |X|/m$

Then there is a subgroup S of G, $S \subseteq X^2$, such that X is contained in $\leq K$ cosets of S.

Suppose not; then for some k, l, m and every p, K, there is a $G^{p,k}$, and $X_0^{p,k} \subseteq G^{p,k}$ finite, such that the conditions hold, but there is no subgroup S with X contained in K cosets of S.

Take an extension of the language of groups which adds predicates $m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq r$ whenever ϕ is a formula and r a rational, and a distinguished predicate X_0. Then for each p, K, $(G^{p,k}, X_0^{p,k})$ gives a model of this language, interpreting $m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq r$ to hold when $\frac{|\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}|}{|X|/m} \geq r$.

Take an ultraproduct of these models, giving a model (G, X_0) with G, X_0 infinite. We may define a measure μ on G-definable subsets of $G^{(i)}$: if $A = \{\bar{x} \mid \phi(\bar{x}, \bar{a})\}$, set $\mu(A) := \inf_x (G, X_0) \models m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq r$.

If $C \subseteq G^2$ is a definable set, we define $C_a := \{x \mid (x, a) \in C\}$.

Note that if $A = \{\bar{x} \mid \phi(\bar{x}, \bar{a})\}$, it is not always the case that $\mu(A) \geq r$ is equivalent to $(G, X_0) \models m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq r$: if $(G, X_0) \models m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq s$ for every rational $s > r$ then we will have $\mu(A) = r$ even if $(G, x_0) \models \neg m(\{\bar{x} \mid \phi(\bar{x}, \bar{a})\}) \geq r$.

In particular, $\{a \mid \mu(C_a) > 0\}$ may not be definable. However, $\mu(C_a)$ is Λ-definable: $\mu(C_a) > 0$ iff $(G, x_0) \models \neg m(C_a) \geq r$ for all $r > 0$.

So $\{(a_1, \ldots, a_i) \in X^{(i)} \mid \mu(a_1^X \cdots a_i^X) \geq 1/m\}$ is not definable. However, if we choose $r \in (1/(m + 1), 1/m)$, and set $Q = \{(a_1, \ldots, a_i) \in X^{(i)} \mid m(a_1^X \cdots a_i^X) \geq r\}$, Q is definable, and we will have $\mu(Q) = 1$ and $\mu(a_1^X \cdots a_i^X) \geq 1/m + 1$ whenever $(a_1, \ldots, a_i) \in Q$.

Fix a countable elementary submodel $M \prec G$; for the remainder, we will always allow parameters from M.

The M-definable sets give a countable, finitely additive algebra of subsets of G, and μ is a finitely additive measure on them. The M-definable sets on $G^{(2)}$ are also a countable, finitely additive algebra, but much bigger than the product of the collection of definable subsets of G with itself. Since we have sufficient saturation, we could extend μ to a σ-additive measure on the σ-algebra generated by the definable sets, and the measure over $G^{(2)}$ would satisfy Fubini’s Theorem relative to the measure over G; however we will be able to work with the following more elementary properties:

- $\mu(A \times B) = \mu(A)\mu(B)$

1 Here we abuse notation by writing $m(C_a)$, which is not quite a formula of the language.
• If $\mu(A_n) = 0$ for all a then $\mu(A) = 0$

We have $\mu(X) = 1$, and $\mu(X^{(n)})$ is bounded.

Definition 2. A wide partial type over a countable set D is an intersection of $M \cup D$-definable sets. A wide type is a partial type p such that, whenever B is $M \cup D$-definable, either $p \subseteq B$ or $p \subseteq \overline{B}$.

We write $tp(a/D)$ for the set of b such that $\phi(a, \vec{d}) \iff \phi(b, \vec{d})$ whenever ϕ is a formula and $\vec{s} \in D^{(n)}$.

I will treat types as being the set of elements satisfying that type.

Note that being a type is relative to a particular choice of algebra: in general, a wide type over a' is only a wide partial type over a, b.

Lemma 3. Each type is contained in $X^{(n)}$ for a fixed n, or disjoint from all $X^{(n)}$.

Proof. This follows from the fact that $X^{(n)}$ is definable for each n.

From here on, we always assume that a type is contained in $X^{(n)}$ for some n.

Lemma 4. Every wide partial type can be extended to a wide type.

Proof. Let B_1, \ldots, B_i, \ldots enumerate the definable sets. Define a sequence of partial types with $q_0 := q$ and, given q_n, if for some $A \supseteq q_n$, $\mu(A \cap B_n) = 0$, $q_{n+1} := q_n \cap \overline{B}_n$, otherwise $q_{n+1} := q_n \cap B_n$.

Let $q' := \bigcap_n q_n$. If q' is not wide, there must be some n such that q_{n+1} is not wide. Let n be least such that q_{n+1} is not wide. If $q_{n+1} \subseteq B_n$ then there is some $A \supseteq q_n$ with $\mu(B_n \cap A) = 0$; this contradicts the definition of q_{n+1}. So $q_{n+1} \subseteq \overline{B}_n$, and there is an $A \supseteq q_n$ with $\mu(A \cap B_n) = 0$. But there must be some $A' \supseteq q_n$ with $\mu(A' \cap B_n) = 0$. Then $\mu(A \cap A') = 0$, contradicting the fact that $A \cap A' \supseteq q_n$ and q_n is wide. Therefore q' is wide.

If $A, B \subseteq G$ (either definable or \bigwedge-definable), we write $Ab = \{ab \mid a \in A\}$, $bA = \{ba \mid a \in A\}$, $AB = \{ab \mid a \in A, b \in B\}$, $A^{-1} = \{a^{-1} \mid a \in A\}$.

Lemma 5.

• If q is a type, so is q^{-1}

• If q is a type over D and $a \in D$, $qa = \{xa \mid x \in q\}$ is a type over D.

• If p, q are types, $pq = \{xy \mid x \in p, y \in q\}$ is a partial type.

Proof.

• For any B, either $q \subseteq B^{-1}$ or $q \subseteq \overline{B}$, and therefore either $q^{-1} \subseteq B$ or $q^{-1} \subseteq \overline{B}$ respectively.

• For any B, either $q \subseteq B a^{-1}$ or $q \subseteq \overline{B} a^{-1}$, and therefore either $qa \subseteq B$ or $qa \subseteq \overline{B}$ respectively.

• We claim that pq is the intersection of all sets AB such that $p \subseteq A$ and $q \subseteq B$. Certainly, if $p \subseteq A$ and $q \subseteq B$, $pq \subseteq AB$. Conversely, if $x \in AB$ for every $A \supseteq p, B \supseteq q$, $\{(a, b) \mid a \in A, b \in B, ab = x\}$ is definable for each A, B, and therefore by saturation, there is a pair (a, b) such that $a \in p, b \in q$, and $ab = x$, so $x \in pq$.

\[2\]
2 Wide Types are Special

Definition 6. \((b_i)\) is a sequence of indiscernibles if whenever \(\phi(b_0, \ldots, b_n)\) and \(m_0 < \cdots < m_n\), \(\phi(b_{m_0}, \ldots, b_{m_n})\).

That is, for every \(n\) there is a type \(p_n\) of \(n+1\)-tuples such that \(tp(b_{m_0}, \ldots, b_{m_n}) = p_n\) whenever \(m_0 < \cdots < m_n\) is an increasing sequence.

Lemma 7. Suppose \(\mu(A_k) > 0\) holds and \((b_i)\) is a sequence of indiscernibles with \(tp(b_i) = tp(b)\). Then for any finite \(b_1, \ldots, b_n\), there is an \(a \in \bigcap_{i \leq n} \phi_{b_i}\).

Proof. Suppose not: that is, for some \(k\), \(\bigcap_{i \leq k} A_{b_i}\) is empty. Let \(k\) be least such that \(\mu(\bigcap_{i \leq k+1} A_{b_i}) = 0\); since \(\mu(A_{b_0}) > 0\), \(k \geq 0\). For \(n \geq k\), let \(C_n = \bigcap_{i \leq k} A_{b_i} \cap A_{b_n}\). Then \(\mu(C_n) = \mu(\bigcap_{i \leq k} A_{b_i}) > 0\) since \(k < k + 1\). But for \(n < m\), by indiscernibility, \(\mu(C_n \cap C_m) = \mu(\bigcap_{i \leq k+1} A_{b_i}) = 0\). This is a contradiction since \(\mu\) is a finite measure.

Lemma 8. If \(tp(a/b)\) is wide and \((b_i)\) is a sequence of indiscernibles with \(tp(b_i) = tp(b)\) then for any finite \(b_1, \ldots, b_n\), there is an \(a'\) with \(tp(a', b_i) = tp(a, b)\) for all \(i \leq n\).

Proof. Suppose \((a, b) \in A\). Then \(a \in A_{b_i}\), so by the previous lemma, there is an \(a'\) so that \(a' \in \bigcap_{i \leq n} A_{b_i}\), so \((a', b_i) \in A\) for each \(i \leq n\). By saturation, there is an \(a'\) such that \((a', b_i) \in A\) simultaneously for all \(i \leq n\), \(A \ni (a, b)\). Therefore \(tp(a', b_i) = tp(a, b)\) for all \(i \leq n\).